104 research outputs found

    Comparison of methods for curvature estimation from volume fractions

    Full text link
    This paper evaluates and compares the accuracy and robustness of curvature estimation methods for three-dimensional interfaces represented implicitly by discrete volume fractions on a Cartesian mesh. The height function (HF) method is compared to three paraboloid fitting methods: fitting to the piecewise linear interface reconstruction centroids (PC), fitting to the piecewise linear interface reconstruction volumetrically (PV), and volumetrically fitting (VF) the paraboloid directly to the volume fraction field. The numerical studies presented in this work find that while the curvature error from the VF method converges with second-order accuracy as with the HF method for static interfaces represented by exact volume fractions, the PV method best balances low curvature errors with low computational cost for dynamic interfaces when the interface reconstruction and advection are coupled to a two-phase Navier-Stokes solver

    Drag, lift and torque correlations for axi-symmetric non-spherical particles in locally non-uniform flows

    Full text link
    This paper derives new correlations to predict the drag, lift and torque coefficients of axi-symmetric non-spherical rod-like particles for several fluid flow regimes and velocity profiles. The fluid velocity profiles considered are locally uniform flow and locally linear shear flow. The novel correlations for the drag, lift and torque coefficients depend on the particle Reynolds number \Rep, the orientation of the particle with respect to the main fluid direction θ\theta, the aspect ratio of the rod-like particle α\alpha, and the dimensionless local shear rate G~\tilde{G}. The effect of the linear shear flow on the hydrodynamic forces is modeled as an additional component for the resultant of forces acting on a particle in a locally uniform flow, hence the independent expressions for the drag, lift and torque coefficients of axi-symmetric particles in a locally uniform flow are also provided in this work. The data provided to fit the coefficient in the new correlation are generated using available analytical expressions in the viscous regime, and performing direct numerical simulations (DNS) of the flow past the axi-symmetric particles at finite particle Reynolds number. The DNS are performed using the direct-forcing immersed boundary method. The coefficients in the proposed drag, lift and torque correlations are determined with a high degree of accuracy, where the mean error in the prediction lies below 2%2\% for the locally uniform flow correlations, and below 1.67%1.67\%, 5.35%5.35\%, 6.78%6.78\% for the correlations accounting for the change in the drag, lift, and torque coefficients in case of a linear shear flow, respectively. The proposed correlations for the drag, lift and torque coefficients can be used in large-scale simulations performed in the Eulerian-Lagrangian framework with locally uniform and non-uniform flows

    A hybrid immersed boundary method for dense particle-laden flows

    Full text link
    A novel smooth immersed boundary method (IBM) based on a direct-forcing formulation is proposed to simulate incompressible dense particle-laden flows. This IBM relies on a regularization of the transfer function between the Eulerian grid points (to discretise the fluid governing equations) and Lagrangian markers (to represent the particle surface) to fulfill the no-slip condition at the surfaces of the particles, allowing both symmetrical and non-symmetrical interpolation and spreading supports to be used. This enables that local source term contributions to the Eulerian grid, accounting for the boundary condition enforced at a Lagrangian marker on the surface of a particle, can be present on the inside of the particle only when this is beneficial, for instance when the Lagrangian marker is near another particle surface or near a domain boundary. However, when the Lagrangian marker is not near another particle surface or a domain boundary, the interpolation and spreading operators are locally symmetrical, meaning a ``classic'' IBM scheme is adopted. This approach, named hybrid IBM (HyBM), is validated with a number of test-cases from the literature. These results show that the HyBM achieves more accurate results compared to a classical IBM framework, especially at coarser mesh resolutions, when there are Lagrangian markers close to a particle surface or a domain wall

    Conservative finite-volume framework and pressure-based algorithm for flows of incompressible, ideal-gas and real-gas fluids at all speeds

    Full text link
    A conservative finite-volume framework, based on a collocated variable arrangement, for the simulation of flows at all speeds, applicable to incompressible, ideal-gas and real-gas fluids is proposed in conjunction with a fully-coupled pressure-based algorithm. The applied conservative discretisation and implementation of the governing conservation laws as well as the definition of the fluxes using a momentum-weighted interpolation are identical for incompressible and compressible fluids, and are suitable for complex geometries represented by unstructured meshes. Incompressible fluids are described by predefined constant fluid properties, while the properties of compressible fluids are described by the Noble-Abel-stiffened-gas model, with the definitions of density and specific static enthalpy of both incompressible and compressible fluids combined in a unified thermodynamic closure model. The discretised governing conservation laws are solved in a single linear system of equations for pressure, velocity and temperature. Together, the conservative finite-volume discretisation, the unified thermodynamic closure model and the pressure-based algorithm yield a conceptually simple, but versatile, numerical framework. The proposed numerical framework is validated thoroughly using a broad variety of test-cases, with Mach numbers ranging from 0 to 239, including viscous flows of incompressible fluids as well as the propagation of acoustic waves and transiently evolving supersonic flows with shock waves in ideal-gas and real-gas fluids. These results demonstrate the accuracy, robustness and the convergence, as well as the conservation of mass and energy, of the numerical framework for flows of incompressible and compressible fluids at all speeds, on structured and unstructured meshes

    A large eddy simulation model for two-way coupled particle-laden turbulent flows

    Full text link
    In this paper we propose a new modeling framework for large eddy simulations (LES) of particle-laden turbulent flows that captures the interaction between the particle and fluid phase on both the resolved and subgrid-scales. Unlike the vast majority of existing subgrid-scale models, the proposed framework does not only account for the influence of the sugrid-scale velocity on the particle acceleration but also considers the effect of the particles on the turbulent fluid flow. This includes the turbulence modulation of the subgrid-scales by the particles, which is taken into account by the modeled subgrid-scale stress tensor, and the effect of the unresolved particle motion on the resolved flow scales. Our new modeling framework combines a recently proposed model for enriching the resolved fluid velocity with a subgrid-scale component, with the solution of a transport equation for the subgrid-scale kinetic energy. We observe very good agreement of the particle pair separation and particle clustering compared to the corresponding direct numerical simulation (DNS). Furthermore, we show that the change of subgrid-scale kinetic energy induced by the particles can be captured by the proposed modeling framework

    Estimation of curvature from volume fractions using parabolic reconstruction on two-dimensional unstructured meshes (Supporting data)

    Get PDF
    This data accompanies the paper "Estimation of curvature from volume fractions using parabolic reconstruction on two-dimensional unstructured meshes", published in Journal of Computational Physics (2017). The document "supportingdata.pdf" gives a description of the data provided in the txt-files

    Phase proper orthogonal decomposition of non-stationary turbulent flow

    Full text link
    A phase proper orthogonal decomposition (Phase POD) method is demonstrated, utilizing phase averaging for the decomposition of spatio-temporal behaviour of statistically non-stationary turbulent flows in an optimized manner. The proposed Phase POD method is herein applied to a periodically forced statistically non-stationary lid-driven cavity flow, implemented using the snapshot proper orthogonal decomposition algorithm. Space-phase modes are extracted to describe the dynamics of the chaotic flow, in which four central flow patterns are identified for describing the evolution of the energetic structures as a function of phase. The modal building blocks of the energy transport equation are demonstrated as a function of the phase. The triadic interaction term can here be interpreted as the convective transport of bi-modal interactions. Non-local energy transfer is observed as a result of the non-stationarity of the dynamical processes inducing triadic interactions spanning across a wide range of mode numbers

    Antimicrobial Susceptibility Profile of Several Bacteria Species Identified in the Peritoneal Exudate of Cows Affected by Parietal Fibrinous Peritonitis after Caesarean Section

    Full text link
    peer reviewedAbstract: The aim of this study was to identify the species and antimicrobial susceptibility of bacteria involved in parietal fibrinous peritonitis (PFP).We studied 156 peritoneal fluid samples from cows presenting PFP after caesarean section. Bacteria were cultured in selective media and their antimicrobial susceptibility was tested by disk diffusion assay. Bacteria were isolated in the majority (129/156; 83%) of samples. The majority (82/129; 63%) of positive samples contained one dominant species, while two or more species were cultured in 47/129 (36%) samples. Trueperella pyogenes (T. Pyogenes) (107 strains) was the most identified species, followed by Escherichia coli (E. coli) (38 strains), Proteus mirabilis (P. mirabilis) (6 strains), and Clostridium perfringens (C. perfringens) (6 strains). Several other species were sporadically identified. Antimicrobial susceptibility was tested in 59/185 strains, predominantly E. coli (38 strains) and P. mirabilis (6 strains). Antibiotic resistance, including resistance to molecules of critical importance, was commonly observed; strains were classified as weakly drug resistant (22/59; 37%), multidrug resistant (24/59; 41%), extensively drug resistant (12/59; 20%), or pan-drug resistant (1/59; 2%). In conclusion, extensive antibiotic resistance in the isolated germs might contribute to treatment failure. Ideally, antimicrobial therapy of PFP should be based upon bacterial culture and susceptibility testing

    Decellularized vascularized bone grafts: A preliminary in vitro porcine model for bioengineered transplantable bone shafts

    Get PDF
    Introduction: Durable reconstruction of critical size bone defects is still a surgical challenge despite the availability of numerous autologous and substitute bone options. In this paper, we have investigated the possibility of creating a living bone allograft, using the perfusion/decellularization/recellularization (PDR) technique, which was applied to an original model of vascularized porcine bone graft.Materials and Methods: 11 porcine bone forelimbs, including radius and ulna, were harvested along with their vasculature including the interosseous artery and then decellularized using a sequential detergent perfusion protocol. Cellular clearance, vasculature, extracellular matrix (ECM), and preservation of biomechanical properties were evaluated. The cytocompatibility and in vitro osteoinductive potential of acellular extracellular matrix were studied by static seeding of NIH-3T3 cells and porcine adipose mesenchymal stem cells (pAMSC), respectively.Results: The vascularized bone grafts were successfully decellularized, with an excellent preservation of the 3D morphology and ECM microarchitecture. Measurements of DNA and ECM components revealed complete cellular clearance and preservation of ECM’s major proteins. Bone mineral density (BMD) acquisitions revealed a slight, yet non-significant, decrease after decellularization, while biomechanical testing was unmodified. Cone beam computed tomography (CBCT) acquisitions after vascular injection of barium sulphate confirmed the preservation of the vascular network throughout the whole graft. The non-toxicity of the scaffold was proven by the very low amount of residual sodium dodecyl sulfate (SDS) in the ECM and confirmed by the high live/dead ratio of fibroblasts seeded on periosteum and bone ECM-grafts after 3, 7, and 16 days of culture. Moreover, cell proliferation tests showed a significant multiplication of seeded cell populations at the same endpoints. Lastly, the differentiation study using pAMSC confirmed the ECM graft’s potential to promote osteogenic differentiation. An osteoid-like deposition occurred when pAMSC were cultured on bone ECM in both proliferative and osteogenic differentiation media.Conclusion: Fully decellularized bone grafts can be obtained by perfusion decellularization, thereby preserving ECM architecture and their vascular network, while promoting cell growth and differentiation. These vascularized decellularized bone shaft allografts thus present a true potential for future in vivo reimplantation. Therefore, they may offer new perspectives for repairing large bone defects and for bone tissue engineering
    • …
    corecore