48 research outputs found

    In-beam internal conversion electron spectroscopy with the SPICE detector

    Full text link
    The SPectrometer for Internal Conversion Electrons (SPICE) has been commissioned for use in conjunction with the TIGRESS γ\gamma-ray spectrometer at TRIUMF's ISAC-II facility. SPICE features a permanent rare-earth magnetic lens to collect and direct internal conversion electrons emitted from nuclear reactions to a thick, highly segmented, lithium-drifted silicon detector. This arrangement, combined with TIGRESS, enables in-beam γ\gamma-ray and internal conversion electron spectroscopy to be performed with stable and radioactive ion beams. Technical aspects of the device, capabilities, and initial performance are presented

    Coulomb excitation of the ∣Tz∣=12,A=23|T_z|=12, A=23 mirror pair

    Get PDF
    Background: Electric-quadrupole (E2E2) strengths relate to the underlying quadrupole deformation of a nucleus and present a challenge for many nuclear theories. Mirror nuclei in the vicinity of the line of N=ZN=Z represent a convenient laboratory for testing deficiencies in such models, making use of the isospin-symmetry of the systems. Purpose: Uncertainties associated with literature E2E2 strengths in \textsuperscript{23}Mg are some of the largest in Tz=∣12∣T_z=\left|\frac{1}{2}\right| nuclei in the sdsd-shell. The purpose of the present work is to improve the precision with which these values are known, to enable better comparison with theoretical models. Methods: Coulomb-excitation measurements of 23^{23}Mg and 23^{23}Na were performed at the TRIUMF-ISAC facility using the TIGRESS spectrometer. They were used to determine the E2E2 matrix elements of mixed E2E2/M1M1 transitions. Results: Reduced E2E2 transition strengths, B(E2)B(E2), were extracted for \textsuperscript{23}Mg and \textsuperscript{23}Na. Their precision was improved by factors of approximately six for both isotopes, while agreeing within uncertainties with previous measurements. Conclusions: A comparison was made with both shell-model and {\it ab initio} valence-space in-medium similarity renormalization group calculations. Valence-space in-medium similarity-renormalization-group calculations were found to underpredict the absolute E2E2 strength - in agreement with previous studies

    Identification of significant E0E0 strength in the 22+→21+2^+_2 \rightarrow 2^+_1 transitions of 58,60,62^{58, 60, 62}Ni

    Get PDF
    The E0E0 transition strength in the 22+→21+2^+_2 \rightarrow 2^+_1 transitions of 58,60,62^{58,60,62}Ni have been determined for the first time following a series of measurements at the Australian National University (ANU) and the University of Kentucky (UK). The CAESAR Compton-suppressed HPGe array and the Super-e solenoid at ANU were used to measure the δ(E2/M1)\delta(E2/M1) mixing ratio and internal conversion coefficient of each transition following inelastic proton scattering. Level half-lives, δ(E2/M1)\delta(E2/M1) mixing ratios and γ\gamma-ray branching ratios were measured at UK following inelastic neutron scattering. The new spectroscopic information was used to determine the E0E0 strengths. These are the first 2+→2+2^+ \rightarrow 2^+ E0E0 transition strengths measured in nuclei with spherical ground states and the E0E0 component is found to be unexpectedly large; in fact, these are amongst the largest E0E0 transition strengths in medium and heavy nuclei reported to date

    Identification of Significant \u3cem\u3eE\u3c/em\u3e0 Strength in the 2\u3csub\u3e2\u3c/sub\u3e\u3csup\u3e+\u3c/sup\u3e → 2\u3csub\u3e1\u3c/sub\u3e\u3csup\u3e+\u3c/sup\u3e Transitions of \u3csup\u3e58,60,62\u3c/sup\u3eNi

    Get PDF
    The E0 transition strength in the 22+ → 21+ transitions of 58,60,62Ni have been determined for the first time following a series of measurements at the Australian National University (ANU) and the University of Kentucky (UK). The CAESAR Compton-suppressed HPGe array and the Super-e solenoid at ANU were used to measure the δ(E2/M1) mixing ratio and internal conversion coefficient of each transition following inelastic proton scattering. Level half-lives, δ(E2/M1) mixing ratios and γ-ray branching ratios were measured at UK following inelastic neutron scattering. The new spectroscopic information was used to determine the E0 strengths. These are the first 2+ → 2+ E0 transition strengths measured in nuclei with spherical ground states and the E0 component is found to be unexpectedly large; in fact, these are amongst the largest E0 transition strengths in medium and heavy nuclei reported to date
    corecore