182 research outputs found

    Nutrient recycling from bio-digestion waste as green fertilizers

    Get PDF
    In the transition from a fossil to a bio-based economy, it has become an important challenge to maximally recuperate valuable nutrients coming from waste streams. Nutrient resources are rapidly depleting, significant amounts of fossil energy are used for the production of chemical fertilizers, whereas costs for energy and fertilizers are increasing. In the meantime, biogas production through anaerobic digestion produces nutrient-rich digestates. In high-nutrient regions, these products cannot or only sparingly be returned to agricultural land in its crude unprocessed form. The consequent processing of this digestate requires a variety of technologies producing a lot of different derivatives, which could potentially be re-used as green fertilizers in agriculture. As such, a sustainable alternative for fossil-based mineral fertilizers could be provided. The aim of this study is to characterize the physicochemical properties of digestates and derivatives, in order to identify the fertilizer value and potential bottlenecks for agricultural re-use of these products, in line with European legislative constraints. In addition, the economic and ecological benefits of substituting conventional fertilizers by digestates and derivatives are quantified and evaluated. Waste water from acidic air scrubbers for ammonia removal shows potential as N-S-fertilizer, whereas concentrates resulting from membrane filtrated liquid fraction of digestate show promise as N-K-fertilizer. Substituting artificial fertilizers by air scrubber water or membrane filtration concentrates theoretically always results in significant economic and ecological benefits for the agriculturist. Field research is now on-going in order to evaluate the impact on soil and crop production by application of these new green fertilizers

    The impact of concentrated pig production in Flanders : a spatial analysis

    Get PDF
    Historically concentrated livestock production and, consequently, manure production and management in Belgium have resulted in severe environmental impacts. One major impact, nitrate leaching from soil to surface water, is being tackled through the European Nitrates Directive by imposing strict fertilization standards. However, another significant impact of manure management is the emission of greenhouse gasses (GHG - CO2, CH4, NH3 and N2O) into the air, thereby contributing to global warming. Calls have been made to reduce the high manure pressure and related environmental effects in Belgium by relocating and more evenly spreading livestock production. This paper explores the spatial spreading of CO2-equivalent emissions from livestock production in Belgium and attempt to answer the following question: ‘Can spatial reallocation of livestock production in Belgium reduce the impact of GHG emissions?’. This question is translated into several research objectives: 1) conduct an economic (cost minimization) and environmental (GHG minimization) optimization for 3 manure management scenarios, 2) determine the main differences between both approaches, and 3) determine the marginal spatial impact on CO2 emissions of a decrease in manure pressure (i.e., increased spreading of pig production). To conduct the analysis, a model was developed that builds on the spatial mathematical programming multi-agent manure allocation model developed by Van der Straeten et al. (2010). Three options for manure management are inserted: transport of raw manure from nutrient excess to nutrient deficit areas, biological treatment of manure (manure processing) and manure separation. The model optimizes, at municipal level, either the cost-efficiency, either the environmental effect of the manure market in Belgium based on Belgian fertilization standards. While cost-efficiency is calculated based on transport distances and cost of manure separation and processing, GHG emissions, and hence, carbon footprint, are determined based on a life cycle analysis type calculation. The results of the model simulations show that, while the economic optimum is reached by maximizing the transport of raw manure until fertilization standards are fulfilled and subsequently separating and processing the excess manure, the environmental optimum, from a carbon footprint point of view, is reached by separating all manure as this option has the lowest CO2 emissions, mainly due to the limited manure storage time. Moreover, the analyses indicate that rearrangement of the spatial spreading of livestock production in Belgium will not substantially decrease CO2 emissions. As manure storage is the main contributor to the carbon footprint, solutions should rather lie in changing these storage systems

    Nutrient recovery from digestates : techniques and end-products

    Get PDF
    In nitrate vulnerable zones application of animal manure to land is limited. Digestate from anaerobic digestion plants competes with manure for nutrient disposal on arable land, which forms a serious hinder for the biogas sector to develop in these regions. Hence, one of its biggest challenges is to find cost-effective and sustainable ways for digestate processing or disposal. Furthermore, primary phosphorus resources are becoming scarce and expensive and will be depleted within a certain time. This urges the need to recycle P from secondary sources, like digestate or manure. From a sustainability point of view, it seems therefore no more than logical that digestate processing techniques switched their focus to nutrient recovery rather than nutrient removal. This paper gives an overview of digestate processing techniques, with a special focus on nutrient recovery techniques. In this paper nutrient recovery techniques are delineated as techniques that (1) create an end-product with higher nutrient concentrations than the raw digestate or (2) separate the envisaged nutrients from organic compounds that are undesirable in the end-product, with the aim to produce an end-product that is fit for use in chemical or fertiliser industry or as a mineral fertiliser replacement. Various nutrient recovery techniques are described, with attention for some technical bottlenecks and the current state of development. Where possible, physicochemical characteristics of the endproducts are given
    corecore