32 research outputs found

    Extreme plasma states in laser-governed vacuum breakdown

    Get PDF
    Triggering vacuum breakdown at the upcoming laser facilities can provide rapid electron-positron pair production for studies in laboratory astrophysics and fundamental physics. However, the density of the emerging plasma should seemingly stop rising at the relativistic critical density, when the plasma becomes opaque. Here we identify the opportunity of breaking this limit using optimal beam configuration of petawatt-class lasers. Tightly focused laser fields allow plasma generation in a small focal volume much less than Ī»3{\lambda}^3, and creating extreme plasma states in terms of density and produced currents. These states can be regarded as a new object of nonlinear plasma physics. Using 3D QED-PIC simulations we demonstrate the possibility of reaching densities of more than 102510^{25} cmāˆ’3^{-3}, which is an order of magnitude higher than previously expected. Controlling the process via the initial target parameters gives the opportunity to reach the discovered plasma states at the upcoming laser facilities

    Hydrodynamic analysis of an unsteady pressureless filtration flow in earth cofferdams

    Get PDF
    Non-pressure filtration flows with a free surface, on which the fluid pressure is a constant and equal to the external atmospheric pressure, are essential characteristic of groundwater filtration through such hydraulic structures as, dams, water drawdowns, drains, foundations, and pits during their drain. The problems of fluid filtration in porous media are distinguished by a variety of boundary conditions for the desired complex filtration potential, geometric and physical characteristics of the filtration flow. Solving such problems by analytical methods becomes significantly more complicated due to the nonlinearity of the equation describing the filtration movement, the presence of a free surface and the geometry of the slopes of the structure. An alternative to their solution is the use of numerical methods for estimating unsteady free-flow filtration flows. This research is dedicated to developing a hydrodynamic analysis approach of the process of unsteady filtration by the methods of computational fluid dynamics on the example of a rectangular cofferdam of various configurations to apply the results in the design of hydraulic structures. Numerical modeling of an unsteady free-flow filtration in a rectangular cofferdam using the finite volume URANS method (ANSYS FLUENT) and finite-element method (PLAXIS 2D) was carried out. The depression curve evolution through time was obtained. Also, numerical results have been compared both with the experimental results and classical theoretical assumptions. Was found that the constructed models both for finite-volume and finite-element methods are consistent enough with the experimental data, and on the other hand, theoretical assumptions donā€™t agree with experimental and numerical data. Further, the filtration patterns in rectangular cofferdams with different drain positions were obtained using the developed calculation model, which allows to choose the most effective drain position for different purposes

    Ionospheric Non-linear Effects Observed During Very-Long-Distance HF Propagation

    Get PDF
    A new super-long-range wave propagation technique was implemented at different High Frequency (HF) heating facilities. The HF waves radiated by a powerful heater were scattered into the ionospheric waveguide by the stimulated field aligned striations. This waveguide was formed in a valley region between the E- and F- layers of the ionosphere. The wave trapping and channeling provide super-long-range propagation of HF heater signals detected at the Ukrainian Antarctic Academik Vernadsky Station (UAS) which is many thousand kilometers away from the corresponding HF heating facility. This paper aims to study the excitation of the ionospheric waveguide due to the scattering of the HF heating wave by artificial field aligned irregularities. In addition, the probing of stimulated ionospheric irregularities can be obtained from analyses of the signals received at far distance from the HF heater. The paper uses a novel method of scattering of the HF radiation by the heating facility for diagnostics of non-linear effects at the super-long radio paths. Experiments were conducted at three different powerful HF facilities: EISCAT (Norway), HAARP (Alaska), and Arecibo (Puerto Rico) and by using different far spaced receiving sites. The key problems for super-long-range propagation regime is the feeding of ionospheric waveguide. Then the energy needs to exit from the waveguide at a specific location to be detected by the surface-based receiver. During our studies the waveguide feeding was provided by the scattering of HF waves by the artificial ionospheric turbulence (AIT) above the HF heater. An interesting opportunity for the channeling of the HF signals occurs due to the aspect scattering of radio waves by field aligned irregularities (FAI), when the scattering vector is parallel to the Earth surface. Such FAIs geometry takes place over the Arecibo facility. Here FAI are oriented along the geomagnetic field line inclined by 43 degrees. Since the Arecibo HF beam is vertical, the aspect scattered waves will be oriented almost horizontally toward the South. Such geometry provides unique opportunity to channel the radio wave energy into the ionospheric waveguide and excites the whispering gallery modes

    Conflict, cooperation or competition in the Caspian Sea region:A critical review of the New Great Game paradigm

    Get PDF
    This article critically reviews the New Great Game image of the Caspian Sea region and the assumptions, concepts, and mechanisms (revolving around actors, aims, and motivations) this image is based on. More specifically, this review essay answers the following questions: How does the academic literature interpret the impact of competition between great powers on social, political and economic developments in the Caspian Sea region? Which actors are presented as the dominant players? The essay also introduces the existing criticism of the New Great Game concept and alternatives to it that have already been put forward. By identifying the gaps and limits of existing scholarship, this article offers new avenues for alternative theoretical and empirical interpretations. More specifically, this article argues that the New Great Game literature promotes unsystematic and shallow discussion as it ignores and misunderstands historical, material, political, economic, and normative differences in the Caspian Sea region. Within this discussion, actors, interests, identities, social contexts, and principles are taken to be fixed, i.e. not prone to change or to any sort of adjustmen

    Anglų ir sovietų santykiai Baltijos problemos kontekste, 1918ā€“1922 m

    No full text
    The paper deals with the main trends in relations between Great Britain and Soviet Russia in the context of the ā€˜Baltic problemā€™, which emerged on the international agenda right after the collapse of the Russian Empire, in the process of the Bolsheviks assuming power and conducting a war against the Whites, the troops of the Entente, and the armies of the new independent states. The author focuses on subsequent stages in the decision-making process, and actual steps taken by London and Moscow with regard to the three new east Baltic states of Estonia, Latvia and Lithuania, taking the latter as a special case. In conclusion, a transition can be traced from the first attempts by Britain to guarantee mere self-governing status for the countries in question, to full recognition of their independence, supported by the Bolshevik government, which, however, opposed the emergence of the Baltic League (or Federation) under the indirect patronage of Britain supported by the League of Nations

    The capability of pulsed laser radiation for cutting band saws hardening

    No full text
    The article deals with the possibilities of pulsed laser radiation for hardening the band saws. The regimes of pulsed laser hardening the band saws of 1 mm thick made of tool steel 9CrV are grounded theoretically and experimentally tested. Selected and justified modes of treatment harden in the autohardening mode without additional heat removal. The results of the experimental research of microhardness are presented and formed as a result of processing of the microstructure. Selected modes increase the microhardness of the surface to 8500 MPa and form ultra highly dispersed structure in the surface layer characterized by high resistance to abrasion

    The capability of pulsed laser radiation for cutting band saws hardening

    No full text
    The article deals with the possibilities of pulsed laser radiation for hardening the band saws. The regimes of pulsed laser hardening the band saws of 1 mm thick made of tool steel 9CrV are grounded theoretically and experimentally tested. Selected and justified modes of treatment harden in the autohardening mode without additional heat removal. The results of the experimental research of microhardness are presented and formed as a result of processing of the microstructure. Selected modes increase the microhardness of the surface to 8500 MPa and form ultra highly dispersed structure in the surface layer characterized by high resistance to abrasion

    Slug Regime Transitions in a Two-Phase Flow in Horizontal Round Pipe. CFD Simulations

    No full text
    The main objective of the study is to propose a technical solution integrated into the pipeline for the transition of the flow regime from slug to bubbly two-phase flow. The object of research is isothermal two-phase gas–Newtonian-liquid flow in a horizontal circular pipeline. There is local resistance in the pipe in the form of a streamlined transverse mesh partition. The mesh partition ensures the transition of the flow from the slug regime to the bubbly regime. The purpose of the study is to propose a technical solution integrated into the pipeline for changing the flow regime of a two-phase flow from slug to bubbly flow. The method of research is a simulation using computational fluid dynamics (CFD) numerical simulation. The Navier–Stokes equations averaged by Reynolds describes the fluid motion. The k-ε models were used to close the Reynolds-averaged Navier–Stokes (RANS) equations. The computing cluster «Polytechnic—RSK Tornado» was used to solve the tasks. The results of simulation show that pressure drop on the grid did not exceed 10% of the pressure drop along the length of the pipeline. The mesh partition transits the flow regime from slug to layered one, which will help to increase the service life and operational safety of a real pipeline at insignificant energy costs to overcome the additional resistance integrated into the pipeline

    Towards an Algorithm for Retrieval of the Parameters of the Marine Atmospheric Boundary Layer at High Wind Speeds Using Collocated Aircraft and Satellite Remote Sensing

    No full text
    A method has been developed for the retrieval of the atmospheric boundary layer parameters in tropical cyclones, namely the dynamic speed, the wind speed at a 10 m height, and the roughness parameter. For the analysis, the wind speed profiles were obtained from NOAA GPS-dropsondes and collocated with the data from the Stepped-Frequency Microwave Radiometer (SFMR). The parameters of the atmospheric boundary layer from the GPS-dropsonde data were obtained by taking into account the self-similarity of the velocity defect profile. The emissivity, determined from the radiometric measurement data, was calibrated to the field data from the GPS-dropsondes. Empirical relations between the wind speed, dynamic wind speed, and aerodynamic drag coefficient with the surface emissivity have been proposed. Based on a comparison of the measured dynamic parameters and the surface emissivity, empirical formulas have also been proposed. From an analysis of cross-polarized Sentinel-1 SAR images and collocated SFMR measurements for hurricanes Irma (2017/09/07) and Maria (2017/09/21 and 2017/09/23), we have obtained the dependences of the NRCS on the ocean surface emissivity, surface wind speed, and friction velocity. These results could potentially be used to improve the algorithm for the retrieval of boundary layer parameters in tropical cyclones from remote sensing data

    Numerical study of the low-Reynolds flows in the vertical heated caverns

    Get PDF
    The object of research is the critical geometry of a three-dimensional air flow in a cavern between two vertical heated plates. In this rate the convection's contribution to heat transfer will be limited due to thermal conductivity at a fixture temperature drop. A three-dimensional RANS approach closed by the k-w SST turbulence model in conjunction with the energy equation. The model validated and verified by comparison with the experimental results. The results of the work applied in developing of ventilated faƧades
    corecore