5 research outputs found

    Nonstoichiometric Strontium Ferromolybdate as an Electrode Material for Solid Oxide Fuel Cells

    No full text
    This review is devoted to the application of Sr2FeMoO6−δ (SFM) and Sr2F1.5Mo0.5O6−δ (SF1.5M) in La1−xSrxGa1−yMgyO3−δ (LSGM)-based SOFCs. We consider the most relevant physical properties (crystal structure, thermodynamic stability, iron and molybdenum valence states, oxygen vacancy formation and oxygen non-stoichiometry, electrical conductivity), A- and B-site ion substitution, and the performance of SF1+xM SOFCs (polarization resistance, operation with hydrogen, operation with hydrocarbons and methanol). Their properties can be tailored to a particular application by the substitution of different metal cations into their lattices. SF1+xM materials are excellent catalysts in hydrocarbon oxidation and can prevent carbon deposition due to the ability to exchange lattice oxygen with the gaseous phase. Moreover, they are sulfur tolerant. This opens the way to direct hydrocarbon-fueled SOFCs, eliminating the need for external fuel reforming and sulfur removal components. Such SOFCs can be greatly simplified and operate with much higher overall efficiency, thus contributing to the solution to the lack of energy problem in our modern world

    Absence of Weak Localization Effects in Strontium Ferromolybdate

    No full text
    Sr2FeMoO6-δ (SFMO) double perovskite is a promising candidate for room-temperature spintronic applications, since it possesses a half-metallic character (with theoretically 100% spin polarization), a high Curie temperature of about 415 K and a low-field magnetoresistance (LFMR). The magnetic, resistive and catalytic properties of the double perovskite SFMO are excellent for spintronic (non-volatile memory), sensing, fuel cell and microwave absorber applications. However, due to different synthesis conditions of ceramics and thin films, different mechanisms of electrical conductivity and magnetoresistance prevail. In this work, we consider the occurrence of a weak localization effect in SFMO commonly obtained in disordered metallic or semiconducting systems at very low temperatures due to quantum interference of backscattered electrons. We calculate the quantum corrections to conductivity and the contribution of electron scattering to the resistivity of SFMO. We attribute the temperature dependence of SFMO ceramic resistivity in the absence of a magnetic field to the fluctuation-induced tunneling model. We also attribute the decreasing resistivity in the temperature range from 409 K to 590 K to adiabatic small polaron hopping and not to localization effects. Neither fluctuation-induced tunneling nor adiabatic small polaron hopping favors quantum interference. Additionally, we demonstrate that the resistivity upturn behavior of SFMO cannot be explained by weak localization. Here, the fitted model parameters have no physically meaningful values, i.e., the fitted weak localization coefficient (B′) was three orders of magnitude lower than the theoretical coefficient, while the fitted exponent (n) of the electron–electron interaction term (CnTn) could not be assigned to a specific electron-scattering mechanism. Consequently, to the best of our knowledge, there is still no convincing evidence for the presence of weak localization in SFMO

    Nonstoichiometric Strontium Ferromolybdate as an Electrode Material for Solid Oxide Fuel Cells

    No full text
    This review is devoted to the application of Sr2FeMoO6−δ (SFM) and Sr2F1.5Mo0.5O6−δ (SF1.5M) in La1−xSrxGa1−yMgyO3−δ (LSGM)-based SOFCs. We consider the most relevant physical properties (crystal structure, thermodynamic stability, iron and molybdenum valence states, oxygen vacancy formation and oxygen non-stoichiometry, electrical conductivity), A- and B-site ion substitution, and the performance of SF1+xM SOFCs (polarization resistance, operation with hydrogen, operation with hydrocarbons and methanol). Their properties can be tailored to a particular application by the substitution of different metal cations into their lattices. SF1+xM materials are excellent catalysts in hydrocarbon oxidation and can prevent carbon deposition due to the ability to exchange lattice oxygen with the gaseous phase. Moreover, they are sulfur tolerant. This opens the way to direct hydrocarbon-fueled SOFCs, eliminating the need for external fuel reforming and sulfur removal components. Such SOFCs can be greatly simplified and operate with much higher overall efficiency, thus contributing to the solution to the lack of energy problem in our modern world

    Magnetization of Magnetically Inhomogeneous Sr<sub>2</sub>FeMoO<sub>6-</sub><i>δ</i> Nanoparticles

    Get PDF
    In this work, we describe the magnetization of nanosized SFMO particles with a narrow size distribution around ca. 70 nm fabricated by the citrate-gel technique. The single-phase composition and superstructure ordering degree were proved by X-ray diffraction, the superparamagnetic behavior by magnetization measurements using zero-field cooled and field-cooled protocols, as well as by electron magnetic resonance. Different contributions to the magnetic anisotropy constant and the temperature dependence of the magnetocrystalline anisotropy are discussed

    Strontium ferromolybdate-based magnetic tunnel junctions

    Get PDF
    Thin-film strontium ferromolybdate is a promising material for applications in room-temperature magnetic tunnel junction devices. These are spin-based, low-power-consuming alternatives to CMOS in non-volatile memories, comparators, analog-to-digital converters, and magnetic sensors. In this work, we consider the main tasks to be solved when creating such devices based on strontium ferromolybdate: (i) selecting an appropriate tunnel barrier material, (ii) determining the role of the interface roughness and its quantification, (iii) determining the influence of the interface dead layer, (iv) establishing appropriate models of the tunnel magnetoresistance, and (v) promoting the low-field magnetoresistance in (111)-oriented thin films. We demonstrate that (i) barrier materials with a lower effective electronegativity than strontium ferromolybdate are beneficial, (ii) diminution of the magnetic offset field (the latter caused by magnetic coupling) requires a wavy surface rather than solely a surface with small roughness, (iii) the interface dead-layer thickness is of the order of 10 nm, (iv) the tunnel magnetoresistance deteriorates due to spin-independent tunneling and magnetically disordered interface layers, and (v) antiphase boundaries along the growth direction promote the negative low-field magnetoresistance by reducing charge carrier scattering in the absence of the field.publishe
    corecore