28 research outputs found

    Biventricular / Left Ventricular Pacing in Hypertrophic Obstructive Cardiomyopathy: An Overview

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is an autosomal dominant inherited genetic disease characterized by compensatory pathological left ventricle (LV) hypertrophy due to sarcomere dysfunction. In an important proportion of patients with HCM, the site and extent of cardiac hypertrophy results in severe obstruction to LV outflow tract (LVOT), contributing to disabling symptoms and increasing the risk of sudden cardiac death (SCD). In patients with progressive and/or refractory symptoms despite optimal pharmacological treatment, invasive therapies that diminish or abolish LVOT obstruction relieve heart failure-related symptoms, improve quality of life and could be associated with long-term survival similar to that observed in the general population. The gold standard in this respect is surgical septal myectomy, which might be supplementary associated with a reduction in SCD. Percutaneous techniques, particularly alcohol septal ablation (ASA) and more recently radiofrequency (RF) septal ablation, can achieve LVOT gradient reduction and symptomatic benefit in a large proportion of HOCM patients at the cost of a supposedly limited septal myocardial necrosis and a 10-20% risk of chronic atrioventricular block. After an initial period of enthusiasm, standard DDD pacing failed to show in randomized trials significant LVOT gradient reductions and objective improvement in exercise capacity. However, case reports and recent small pilot studies suggested that atrial synchronous LV or biventricular (biV) pacing significantly reduce LVOT obstruction and improve symptoms (acutely as well as long-term) in a large proportion of severely symptomatic HOCM patients not suitable to other gradient reduction therapies. Moreover, biV/LV pacing in HOCM seems to be associated with significant LV reverse remodelling

    Concomitant pulmonary vein isolation and percutaneous closure of atrial septal defects: A pilot project

    Get PDF
    Background: Patients with an atrial septal defect (ASD) are at increased risk of developing atrial fibrillation (AF). Currently percutaneous ASD closure is the preferred therapeutic strategy and although pulmonary vein isolation (PVI) for AF is feasible after ASD closure, the transseptal puncture can be technically challenging and probably increases the perioperative risk. A staged approach, with PVI several months before ASD closure, has been recommended for patients already scheduled for closure, but no data are available on combined procedures. Purpose: This pilot study evaluates the feasibility of a combined procedure of PVI and ASD closure in patients with a hemodynamic important ASD and documented AF. Methods: In one procedure, PVI was performed prior to placement of the ASD closure device. Transseptal access for PVI was obtained via wire passage through the ASD in all patients. Patients were followed with 5-day-holter monitoring at 3, 6, and 12 months. Recurrence of AF was defined as a documented, symptomatic episode of AF. Results: The study population consisted of five patients (four females, mean age: 58 (±3) years). Acute PVI was achieved in all patients. Only one patient had a small residual ASD after closure. Besides a small groin hematoma in two patients, no complications occurred. After 12-month follow-up, three patients were free of AF recurrence (60%). Conclusion: This study shows that a combined PVI with ASD closure is feasible with an acceptable success rate of AF free survival. These preliminary results in a small patient group warrants a larger trial

    The arrhythmogenic cardiomyopathy phenotype associated with PKP2 c.1211dup variant

    Get PDF
    Background: The arrhythmogenic cardiomyopathy (ACM) phenotype, with life-threatening ventricular arrhythmias and heart failure, varies according to genetic aetiology. We aimed to characterise the phenotype associated with the variant c.1211dup (p.Val406Serfs*4) in the plakophilin‑2 gene (PKP2) and compare it with previously reported Dutch PKP2 founder variants. Methods: Clinical data were collected retrospectively from medical records of 106 PKP2 c.1211dup heterozygous carriers. Using data from the Netherlands ACM Registry, c.1211dup was compared with 3 other truncating PKP2 variants (c.235C &gt; T (p.Arg79*), c.397C &gt; T (p.Gln133*) and c.2489+1G &gt; A (p.?)). Results: Of the 106 carriers, 47 (44%) were diagnosed with ACM, at a mean age of 41 years. By the end of follow-up, 29 (27%) had experienced sustained ventricular arrhythmias and 12 (11%) had developed heart failure, with male carriers showing significantly higher risks than females on these endpoints (p &lt; 0.05). Based on available cardiac magnetic resonance imaging and echocardiographic data, 46% of the carriers showed either right ventricular dilatation and/or dysfunction, whereas a substantial minority (37%) had some form of left ventricular involvement. Both geographical distribution of carriers and haplotype analysis suggested PKP2 c.1211dup to be a founder variant originating from the South-Western coast of the Netherlands. Finally, a Cox proportional hazards model suggested significant differences in ventricular arrhythmia–free survival between 4 PKP2 founder variants, including c.1211dup. Conclusions: The PKP2 c.1211dup variant is a Dutch founder variant associated with a typical right-dominant ACM phenotype, but also left ventricular involvement, and a possibly more severe phenotype than other Dutch PKP2 founder variants.</p

    Inappropriate ICD Shocks - When Monitoring Zones Do More Than Monitor

    No full text
    The ventricular tachycardia (VT) monitoring zone in implantable cardioverter defibrillators (ICDs) is usually programmed to detect slow VTs. However, it is not well known whether programming this zone can affect the ICD arrhythmia redetection or confirmation criteria. We report two cases of inappropriate ICD shocks due to the programming of a slow VT monitoring zone in the same device model

    Direct evidence for insulin-induced capillary recruitment in skin of healthy subjects during physiological hyperinsulinemia

    No full text
    It has been proposed that insulin-mediated changes in muscle perfusion modulate insulin-mediated glucose uptake. However, the putative effects of insulin on the microcirculation that permit such modulation have not been studied in humans. We examined the effects of systemic hyperinsulinemia on skin microvascular function in eight healthy nondiabetic subjects. In addition, the effects of locally administered insulin on skin blood flow were assessed in 10 healthy subjects. During a hyperinsulinemic clamp, we measured leg blood flow with venous occlusion plethysmography, skin capillary density with capillaroscopy, endothelium-(in)dependent vasodilatation of skin microcirculation with iontophoresis of acetylcholine and sodium nitroprusside combined with laser Doppler fluxmetry, and skin vasomotion by Fourier analysis of microcirculatory blood flow. To exclude nonspecific changes in the hemodynamic variables, a time-volume control study was performed. Insulin iontophoresis was used to study the local effects of insulin on skin blood flow. Compared to the control study, systemic hyperinsulinemia caused an increase in leg blood flow (-0.54 ± 0.93 vs. 1.97 ± 1.1 ml · min-1 · dl-1; P < 0.01), an increase in the number of perfused capillaries in the resting state (-3.7 ± 3.0 vs. 3.4 ± 1.4 per mm2; P < 0.001) and during postocclusive reactive hyperemia (-0.8 ± 2.2 vs. 5.1 ± 3.7 per mm2; P < 0.001), an augmentation of the vasodilatation caused by acetylcholine (722 ± 206 vs. 989 ± 495%; P < 0.05) and sodium nitroprusside (618 ± 159 vs. 788 ± 276%; P < 0.05), and a change in vasomotion by increasing the relative contribution of the 0.01- to 0.02-Hz and 0.4- to 1.6-Hz spectral components (P < 0.05). Compared to the control substance, locally administered insulin caused a rapid increase (∼13.5 min) in skin microcirculatory blood flow (34.4 ± 42.5 vs. 82.8 ± 85.7%; P < 0.05). In conclusion, systemic hyperinsulinemia in skin 1) induces recruitment of capillaries, 2) augments nitric oxide-mediated vasodilatation, and 3) influences vasomotion. In addition, locally administered insulin 4) induces a rapid increase in total skin blood flow, independent of systemic effects

    Biventricular / Left Ventricular Pacing in Hypertrophic Obstructive Cardiomyopathy: An Overview

    No full text
    Hypertrophic cardiomyopathy (HCM) is an autosomal dominant inherited genetic disease characterized by compensatory pathological left ventricle (LV) hypertrophy due to sarcomere dysfunction. In an important proportion of patients with HCM, the site and extent of cardiac hypertrophy results in severe obstruction to LV outflow tract (LVOT), contributing to disabling symptoms and increasing the risk of sudden cardiac death (SCD). In patients with progressive and/or refractory symptoms despite optimal pharmacological treatment, invasive therapies that diminish or abolish LVOT obstruction relieve heart failure-related symptoms, improve quality of life and could be associated with long-term survival similar to that observed in the general population. The gold standard in this respect is surgical septal myectomy, which might be supplementary associated with a reduction in SCD. Percutaneous techniques, particularly alcohol septal ablation (ASA) and more recently radiofrequency (RF) septal ablation, can achieve LVOT gradient reduction and symptomatic benefit in a large proportion of HOCM patients at the cost of a supposedly limited septal myocardial necrosis and a 10-20% risk of chronic atrioventricular block. After an initial period of enthusiasm, standard DDD pacing failed to show in randomized trials significant LVOT gradient reductions and objective improvement in exercise capacity. However, case reports and recent small pilot studies suggested that atrial synchronous LV or biventricular (biV) pacing significantly reduce LVOT obstruction and improve symptoms (acutely as well as long-term) in a large proportion of severely symptomatic HOCM patients not suitable to other gradient reduction therapies. Moreover, biV/LV pacing in HOCM seems to be associated with significant LV reverse remodelling
    corecore