839 research outputs found

    The Bayesian Decision Tree Technique with a Sweeping Strategy

    Full text link
    The uncertainty of classification outcomes is of crucial importance for many safety critical applications including, for example, medical diagnostics. In such applications the uncertainty of classification can be reliably estimated within a Bayesian model averaging technique that allows the use of prior information. Decision Tree (DT) classification models used within such a technique gives experts additional information by making this classification scheme observable. The use of the Markov Chain Monte Carlo (MCMC) methodology of stochastic sampling makes the Bayesian DT technique feasible to perform. However, in practice, the MCMC technique may become stuck in a particular DT which is far away from a region with a maximal posterior. Sampling such DTs causes bias in the posterior estimates, and as a result the evaluation of classification uncertainty may be incorrect. In a particular case, the negative effect of such sampling may be reduced by giving additional prior information on the shape of DTs. In this paper we describe a new approach based on sweeping the DTs without additional priors on the favorite shape of DTs. The performances of Bayesian DT techniques with the standard and sweeping strategies are compared on a synthetic data as well as on real datasets. Quantitatively evaluating the uncertainty in terms of entropy of class posterior probabilities, we found that the sweeping strategy is superior to the standard strategy

    Spectral Templates from Multicolor Redshift Surveys

    Get PDF
    Understanding how the physical properties of galaxies (e.g. their spectral type or age) evolve as a function of redshift relies on having an accurate representation of galaxy spectral energy distributions. While it has been known for some time that galaxy spectra can be reconstructed from a handful of orthogonal basis templates, the underlying basis is poorly constrained. The limiting factor has been the lack of large samples of galaxies (covering a wide range in spectral type) with high signal-to-noise spectrophotometric observations. To alleviate this problem we introduce here a new technique for reconstructing galaxy spectral energy distributions directly from samples of galaxies with broadband photometric data and spectroscopic redshifts. Exploiting the statistical approach of the Karhunen-Loeve expansion, our iterative training procedure increasingly improves the eigenbasis, so that it provides better agreement with the photometry. We demonstrate the utility of this approach by applying these improved spectral energy distributions to the estimation of photometric redshifts for the HDF sample of galaxies. We find that in a small number of iterations the dispersion in the photometric redshifts estimator (a comparison between predicted and measured redshifts) can decrease by up to a factor of 2.Comment: 25 pages, 9 figures, LaTeX AASTeX, accepted for publication in A

    SRB Environment Evaluation and Analysis. Volume 3: ASRB Plume Induced Environments

    Get PDF
    Contract NAS8-37891 was expanded in late 1989 to initiate analysis of Shuttle plume induced environments as a result of the substitution of the Advanced Solid Rocket Booster (ASRB) for the Redesigned Solid Rocket Booster (RSRB). To support this analysis, REMTECH became involved in subscale and full-scale solid rocket motor test programs which further expanded the scope of work. Later contract modifications included additional tasks to produce initial design cycle environments and to specify development flight instrumentation. Volume 3 of the final report describes these analyses and contains a summary of reports resulting from various studies

    A new method to measure Bowen ratios using high-resolution vertical dry and wet bulb temperature profiles

    Get PDF
    The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. The Bowen ratio method is based on the measurement of air temperature and vapour pressure gradients. If these measurements are performed at only two heights, correctness of data becomes critical. In this paper we present the concept of a new measurement method to estimate the Bowen ratio based on vertical dry and wet bulb temperature profiles with high spatial resolution. A short field experiment with distributed temperature sensing (DTS) in a fibre optic cable with 13 measurement points in the vertical was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial plot near Pietermaritzburg (South Africa). Using the DTS cable as a psychrometer, a near continuous observation of vapour pressure and air temperature at 0.20 m intervals was established. These data allowed the computation of the Bowen ratio with a high spatial and temporal precision. The daytime latent and sensible heat fluxes were estimated by combining the Bowen ratio values from the DTS-based system with independent measurements of net radiation and soil heat flux. The sensible heat flux, which is the relevant term to evaluate, derived from the DTS-based Bowen ratio (BR-DTS) was compared with that derived from co-located eddy covariance (<i>R</i><sup>2</sup> = 0.91), surface layer scintillometer (<i>R</i><sup>2</sup> = 0.81) and surface renewal (<i>R</i><sup>2</sup> = 0.86) systems. By using multiple measurement points instead of two, more confidence in the derived Bowen ratio values is obtained

    Extending periodic eddy covariance latent heat fluxes through tree sap-flow measurements to estimate long-term total evaporation in a peat swamp forest

    Get PDF
    A combination of measurement and modelling was used to find a pragmatic solution to estimate the annual total evaporation from the rare and indigenous Nkazana Peat Swamp Forest (PSF) on the east coast of Southern Africa to improve the water balance estimates within the area. Actual total evaporation (ETa) was measured during three window periods (between 7 and 9 days each) using an eddy covariance (EC) system on a telescopic mast above the forest canopy. Sap flows of an understory tree and an emergent tree were measured using a low-maintenance heat pulse velocity system for an entire hydrological year (October 2009 to September 2010). An empirical model was derived, describing the relationship between ETa from the Nkazana PSF and sap-flow measurements. These overlapped during two of the window periods (R2 = 0.92 and 0.90), providing hourly estimates of ETa from the Nkazana PSF for a year, totalling 1125 mm (while rainfall was 650 mm). In building the empirical model, it was found that to include the understory tree sap flow provided no benefit to the model performance. In addition, the relationship between the emergent tree sap flow with ETa between the two field campaigns was consistent and could be represented by a single empirical model (R2 = 0.90; RMSE = 0.08 mm h−1). During the window periods of EC measurement, no single meteorological variable was found to describe the Nkazana PSF ETa satisfactorily. However, in terms of evaporation models, the hourly FAO Penman–Monteith reference evaporation (ETo) best described ETa during the August 2009 (R2 = 0.75), November 2009 (R2 = 0.85) and March 2010 (R2 = 0.76) field campaigns, compared to the Priestley–Taylor potential evaporation (ETp) model (R2 = 0.54, 0.74 and 0.62 during the respective field campaigns). From the extended record of ETa (derived in this study from sap flow) and ETo, a monthly crop factor (Kc) was derived for the Nkazana PSF, providing a method of estimating long-term swamp forest water-use from meteorological data. The monthly Kc indicated two distinct periods. From February to May, it was between 1.2 and 1.4 compared with June to January, when the crop factor was 0.8 to 1.0. The derived monthly Kc values were verified as accurate (to one significant digit) using historical data measured at the same site, also using EC, from a previous study. The measurements provided insights into the microclimate within a subtropical peat swamp forest and the contrasting sap flow of emergent and understory trees. They showed that expensive, high-maintenance equipment can be used during manageable window periods in conjunction with low-maintenance systems, dedicated to individual trees, to derive a model to estimate long-term ETa over remote heterogeneous forests. In addition, the contrast in annual ETa and rainfall emphasised the reliance of the Nkazana PSF on groundwater

    Life events and hemodynamic stress reactivity in the middle-aged and elderly

    Get PDF
    Recent versions of the reactivity hypothesis, which consider it to be the product of stress exposure and exaggerated haemodynamic reactions to stress that confers cardiovascular disease risk, assume that reactivity is independent of the experience of stressful life events. This assumption was tested in two substantial cohorts, one middle-aged and one elderly. Participants had to indicate from a list of major stressful life events up to six they had experienced in the previous two years. They were also asked to rate how disruptive and stressful they were, at the time of occurrence and now. Blood pressure and pulse rate were measured at rest and in response to acute mental stress. Those who rated the events as highly disruptive at the time of exposure and currently exhibited blunted systolic blood pressure reactions to acute stress. The present results suggest that acute stress reactivity may not be independent of stressful life events experience

    The effect of acid demineralising bituminous coals and de-ashing the respective chars on nitrogen functional forms

    Get PDF
    An opportunity presented itself to compare changes in nitrogen functional forms brought by the acid treatment of South African bituminous coals and their respective chars. X-ray photoelectron spectroscopy (XPS) was used to determine functional forms of the raw coals, acid-treated coals, respective chars prepared at 740 and 980 °C in a bench-scale fluidised-bed (FB), and at 1000 and 1400 °C in a drop-tube furnace (DTF), as well as their corresponding de-ashed remnants. The XPS N 1s spectra for the raw coals were typically similar to previous widely reported bituminous coals, of which pyrrolic nitrogen was the predominant form of organically bound nitrogen, followed by pyridinic and quaternary nitrogen. In pyrolysed chars, quaternary nitrogen was the dominant form followed by pyridinic, pyrrolic and protonated-/oxidised heterocyclic nitrogen forms respectively. Nonetheless, XPS N 1s analysis for DTF severely pyrolysed chars (1000 and 1400 °C) prepared from high ash and vitrinite-rich coal, and also a char (1400 °C) from a relatively low ash and inertinite-rich coal, gave a spectra with only two sub-peaks corresponding to quaternary and pyridinic nitrogen. It seems that the HCl/HF/HCl sequential demineralising/de-ashing process had no effect on the nitrogen functional forms of raw coals and the entire chars prepared from the FB. De-ashing of DTF severely pyrolysed chars emanating from high ash and inertinite-rich coal exhibited no marked change to the nitrogen functional forms. However, acid treatment of DTF chars derived from a high ash and vitrinite-rich coal, a char from relatively low ash and inertinite-rich coal, which initially contained pyridinic and quaternary nitrogen resulted in additional nitrogen moieties of pyrrolic and protonated/oxidised nitrogen
    corecore