15 research outputs found

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns

    Biodiversity of protected areas in Scotland A pilot study

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:8313.903(89) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Critical loads for nitrogen deposition for Great Britain

    No full text
    There is currently much interest in mapping critical loads for nitrogen deposition as part of a strategy for controlling nitrogen emissions. While nitrogen deposition may cause acidification and excess nutrient effects, the former were considered previously in studies of sulphur deposition. In the UK, work on developing nutrient nitrogen critical loads maps has used several methods and databases. Two approaches are described here, one a steady state calculation using a nitrogen saturation limit for soil systems, the other an empirical estimate of critical loads set to prevent changes to vegetation communities. The empirical method uses national species records and land cover data derived from satellite imagery. Maps drawn from the available data are dependent upon a number of factors which reflect the approach used. To apply the nutrient critical loads to a strategy for future abatement measures, the nutrient nitrogen values for soils have been incorporated within a critical loads function which takes into account both acidity and nutrient effects as related to deposition loads for sulphur and nitrogen. This function may be used with deposition data to identify the need for sulphur and nitrogen emission reductions
    corecore