2,314 research outputs found

    Light Reflectance Characteristics and Remote Sensing of Waterlettuce

    Get PDF
    Waterlettuce ( Pistia stratiotes L.) is a free-floating exotic aquatic weed that often invades and clogs waterways in the southeastern United States. A study was conducted to evaluate the potential of using remote sensing technology to distinguish infestations of waterlettuce in Texas waterways. Field reflectance measurements showed that waterlettuce had higher visible green reflectance than associated plant species. Waterlettuce could be detected in both aerial color- infrared (CIR) photography and videography where it had light pink to pinkish-white image tonal responses. Computer analysis of CIR photographic and videographic images had overall accuracy assessments of 86% and 84%, respectively. (PDF contains 6 pages.

    Sequential Monte Carlo with transformations

    Get PDF
    This paper examines methodology for performing Bayesian inference sequentially on a sequence of posteriors on spaces of different dimensions. For this, we use sequential Monte Carlo samplers, introducing the innovation of using deterministic transformations to move particles effectively between target distributions with different dimensions. This approach, combined with adaptive methods, yields an extremely flexible and general algorithm for Bayesian model comparison that is suitable for use in applications where the acceptance rate in reversible jump Markov chain Monte Carlo is low. We use this approach on model comparison for mixture models, and for inferring coalescent trees sequentially, as data arrives

    Cool for Cats

    Get PDF
    The iconic Schr\"odinger's cat state describes a system that may be in a superposition of two macroscopically distinct states, for example two clearly separated oscillator coherent states. Quite apart from their role in understanding the quantum classical boundary, such states have been suggested as offering a quantum advantage for quantum metrology, quantum communication and quantum computation. As is well known these applications have to face the difficulty that the irreversible interaction with an environment causes the superposition to rapidly evolve to a mixture of the component states in the case that the environment is not monitored. Here we show that by engineering the interaction with the environment there exists a large class of systems that can evolve irreversibly to a cat state. To be precise we show that it is possible to engineer an irreversible process so that the steady state is close to a pure Schr\"odinger's cat state by using double well systems and an environment comprising two-photon (or phonon) absorbers. We also show that it should be possible to prolong the lifetime of a Schr\"odinger's cat state exposed to the destructive effects of a conventional single-photon decohering environment. Our protocol should make it easier to prepare and maintain Schr\"odinger cat states which would be useful in applications of quantum metrology and information processing as well as being of interest to those probing the quantum to classical transition.Comment: 10 pages, 7 figures. Significantly updated version with supplementary informatio

    Rare event ABC-SMC2^{2}

    Full text link
    Approximate Bayesian computation (ABC) is a well-established family of Monte Carlo methods for performing approximate Bayesian inference in the case where an ``implicit'' model is used for the data: when the data model can be simulated, but the likelihood cannot easily be pointwise evaluated. A fundamental property of standard ABC approaches is that the number of Monte Carlo points required to achieve a given accuracy scales exponentially with the dimension of the data. Prangle et al. (2018) proposes a Markov chain Monte Carlo (MCMC) method that uses a rare event sequential Monte Carlo (SMC) approach to estimating the ABC likelihood that avoids this exponential scaling, and thus allows ABC to be used on higher dimensional data. This paper builds on the work of Prangle et al. (2018) by using the rare event SMC approach within an SMC algorithm, instead of within an MCMC algorithm. The new method has a similar structure to SMC2^{2} (Chopin et al., 2013), and requires less tuning than the MCMC approach. We demonstrate the new approach, compared to existing ABC-SMC methods, on a toy example and on a duplication-divergence random graph model used for modelling protein interaction networks
    • …
    corecore