9 research outputs found
Evaluation of critical parameters in the hollow-fibre system for tuberculosis: A case study of moxifloxacin
AimsThe hollowâfibre system for tuberculosis (HFSâTB) is a preclinical model qualified by the European Medicines Agency to underpin the antiâTB drug development process. It can mimic in vivo pharmacokinetic (PK)âpharmacodynamic (PD) attributes of selected antimicrobials, which could feed into in silico models to inform the design of clinical trials. However, historical data and published protocols are insufficient and omit key information to allow experiments to be reproducible. Therefore, in this work, we aim to optimize and standardize various HFSâTB operational procedures.MethodsFirst, we characterized bacterial growth dynamics with different types of hollowâfibre cartridges, Mycobacterium tuberculosis strains and media. Second, we mimicked a moxifloxacin PK profile within hollowâfibre cartridges, in order to check drugâfibres compatibility. Lastly, we mimicked the moxifloxacin total plasma PK profile in human after once daily oral dose of 400âmg to assess PKâPD after different sampling methods, strains, cartridge size and bacterial adaptation periods before drug infusion into the system.ResultsWe found that final bacterial load inside the HFSâTB was contingent on the studied variables. Besides, we demonstrated that drugâfibres compatibility tests are critical preliminary HFSâTB assays, which need to be properly reported. Lastly, we uncovered that the sampling method and bacterial adaptation period before drug infusion significantly impact actual experimental conclusions.ConclusionOur data contribute to the necessary standardization of HFSâTB experiments, draw attention to multiple aspects of this preclinical model that should be considered when reporting novel results and warn about critical parameters in the HFSâTB currently overlooked
Sox9 Determines Translational Capacity During Early Chondrogenic Differentiation of ATDC5 Cells by Regulating Expression of Ribosome Biogenesis Factors and Ribosomal Proteins
IntroductionIn addition to the well-known cartilage extracellular matrix-related expression of Sox9, we demonstrated that chondrogenic differentiation of progenitor cells is driven by a sharply defined bi-phasic expression of Sox9: an immediate early and a late (extracellular matrix associated) phase expression. In this study, we aimed to determine what biological processes are driven by Sox9 during this early phase of chondrogenic differentiation.MaterialsSox9 expression in ATDC5 cells was knocked down by siRNA transfection at the day before chondrogenic differentiation or at day 6 of differentiation. Samples were harvested at 2 h and 7 days of differentiation. The transcriptomes (RNA-seq approach) and proteomes (Label-free proteomics approach) were compared using pathway and network analyses. Total protein translational capacity was evaluated with the SuNSET assay, active ribosomes were evaluated with polysome profiling, and ribosome modus was evaluated with bicistronic reporter assays.ResultsEarly Sox9 knockdown severely inhibited chondrogenic differentiation weeks later. Sox9 expression during the immediate early phase of ATDC5 chondrogenic differentiation regulated the expression of ribosome biogenesis factors and ribosomal protein subunits. This was accompanied by decreased translational capacity following Sox9 knockdown, and this correlated to lower amounts of active mono- and polysomes. Moreover, cap- versus IRES-mediated translation was altered by Sox9 knockdown. Sox9 overexpression was able to induce reciprocal effects to the Sox9 knockdown.ConclusionHere, we identified an essential new function for Sox9 during early chondrogenic differentiation. A role for Sox9 in regulation of ribosome amount, activity, and/or composition may be crucial in preparation for the demanding proliferative phase and subsequent cartilage extracellular matrix production of chondroprogenitors in the growth plate in vivo
On the Hunt for Next-Generation Antimicrobial Agents: An Online Symposium Organized Jointly by the French Society for Medicinal Chemistry (Société de Chimie Thérapeutique) and the French Microbiology Society (Société Française de Microbiologie) on 9–10 December 2021
The restrictions posed by the COVID-19 pandemic obliged the French Society for Medicinal Chemistry (Société de chimie thérapeutique) and the French Microbiology Society (Société Française de Microbiologie) to organize their joint autumn symposium (entitled “On the hunt for next-generation antimicrobial agents”) online on 9–10 December 2021. The meeting attracted more than 200 researchers from France and abroad with interests in drug discovery, antimicrobial resistance, medicinal chemistry, and related disciplines. This review summarizes the 13 invited keynote lectures. The symposium generated high-level scientific dialogue on the most recent advances in combating antimicrobial resistance. The University of Lille, the Institut Pasteur de Lille, the journal Pharmaceuticals, Oxeltis, and INCATE, sponsored the event
Optimization of pyridylpiperazine-based inhibitors of the Escherichia coli AcrAB-TolC efflux pump
Multidrugâresistant Escherichia coli is a continuously growing worldwide public health problem, in which the well-known AcrAB-TolC tripartite RND efflux pump is a critical driver. We have previously described pyridylpiperazines as a novel class of allosteric inhibitors of E. coli AcrB which bind to a unique site in the protein transmembrane domain, allowing for the potentiation of antibiotic activity. Here, we show a rational optimization of pyridylpiperazines by modifying three specific derivatization points of the pyridine core to improve the potency and the pharmacokinetic properties of this chemical series. In particular, this work found that the introduction of a primary amine to the pyridine through ester (29, BDM91270) or oxadiazole (44, BDM91514) based linkers allowed for analogues with improved antibiotic boosting potency through AcrB inhibition. In vitro studies, using genetically engineered mutants, showed that this improvement in potency is mediated through novel interactions with distal acidic residues of the AcrB binding pocket. Of the two leads, compound 44 was found to have favorable physico-chemical properties and suitable plasma and microsomal stability. Together, this work expands the current structure-activity relationship data on pyridylpiperazine efflux pump inhibitors, and provides a promising step towards future in vivo proof of concept of pyridylpiperazines as antibiotic potentiators
Tricyclic SpiroLactams Kill Mycobacteria In Vitro and In Vivo by Inhibiting Type II NADH Dehydrogenases
International audienceIt is critical that novel classes of antituberculosis drugs are developed to combat the increasing burden of infections by multidrug-resistant strains. To identify such a novel class of antibiotics, a chemical library of unique 3-D bioinspired molecules was explored revealing a promising, mycobacterium specific Tricyclic SpiroLactam (TriSLa) hit. Chemical optimization of the TriSLa scaffold delivered potent analogues with nanomolar activity against replicating and nonreplicating Mycobacterium tuberculosis. Characterization of isolated TriSLa-resistant mutants, and biochemical studies, found TriSLas to act as allosteric inhibitors of type II NADH dehydrogenases (Ndh-2 of the electron transport chain), resulting in an increase in bacterial NADH/NAD+ ratios and decreased ATP levels. TriSLas are chemically distinct from other inhibitors of Ndh-2 but share a dependence for fatty acids for activity. Finally, in vivo proof-of-concept studies showed TriSLas to protect zebrafish larvae from Mycobacterium marinum infection, suggesting a vulnerability of Ndh-2 inhibition in mycobacterial infections