7 research outputs found

    Non-local scaling operators with entanglement renormalization

    Get PDF
    The multi-scale entanglement renormalization ansatz (MERA) can be used, in its scale invariant version, to describe the ground state of a lattice system at a quantum critical point. From the scale invariant MERA one can determine the local scaling operators of the model. Here we show that, in the presence of a global symmetry G\mathcal{G}, it is also possible to determine a class of non-local scaling operators. Each operator consist, for a given group element g∈Gg\in\mathcal{G}, of a semi-infinite string \tGamma_g with a local operator ϕ\phi attached to its open end. In the case of the quantum Ising model, G=Z2\mathcal{G}= \mathbb{Z}_2, they correspond to the disorder operator μ\mu, the fermionic operators ψ\psi and ψˉ\bar{\psi}, and all their descendants. Together with the local scaling operators identity I\mathbb{I}, spin σ\sigma and energy ϵ\epsilon, the fermionic and disorder scaling operators ψ\psi, ψˉ\bar{\psi} and μ\mu are the complete list of primary fields of the Ising CFT. Thefore the scale invariant MERA allows us to characterize all the conformal towers of this CFT.Comment: 4 pages, 4 figures. Revised versio

    Entanglement renormalization and boundary critical phenomena

    Full text link
    The multiscale entanglement renormalization ansatz is applied to the study of boundary critical phenomena. We compute averages of local operators as a function of the distance from the boundary and the surface contribution to the ground state energy. Furthermore, assuming a uniform tensor structure, we show that the multiscale entanglement renormalization ansatz implies an exact relation between bulk and boundary critical exponents known to exist for boundary critical systems.Comment: 6 pages, 4 figures; for a related work see arXiv:0912.164

    Tensor network states and geometry

    Full text link
    Tensor network states are used to approximate ground states of local Hamiltonians on a lattice in D spatial dimensions. Different types of tensor network states can be seen to generate different geometries. Matrix product states (MPS) in D=1 dimensions, as well as projected entangled pair states (PEPS) in D>1 dimensions, reproduce the D-dimensional physical geometry of the lattice model; in contrast, the multi-scale entanglement renormalization ansatz (MERA) generates a (D+1)-dimensional holographic geometry. Here we focus on homogeneous tensor networks, where all the tensors in the network are copies of the same tensor, and argue that certain structural properties of the resulting many-body states are preconditioned by the geometry of the tensor network and are therefore largely independent of the choice of variational parameters. Indeed, the asymptotic decay of correlations in homogeneous MPS and MERA for D=1 systems is seen to be determined by the structure of geodesics in the physical and holographic geometries, respectively; whereas the asymptotic scaling of entanglement entropy is seen to always obey a simple boundary law -- that is, again in the relevant geometry. This geometrical interpretation offers a simple and unifying framework to understand the structural properties of, and helps clarify the relation between, different tensor network states. In addition, it has recently motivated the branching MERA, a generalization of the MERA capable of reproducing violations of the entropic boundary law in D>1 dimensions.Comment: 18 pages, 18 figure

    Tensor networks for complex quantum systems

    No full text

    Advances on tensor network theory: symmetries, fermions, entanglement, and holography

    No full text
    corecore