8 research outputs found

    A Frameshift in CSF2RB Predominant Among Ashkenazi Jews Increases Risk for Crohn's Disease and Reduces Monocyte Signaling via GM-CSF.

    No full text
    Background & aimsCrohn's disease (CD) has the highest prevalence in Ashkenazi Jewish populations. We sought to identify rare, CD-associated frameshift variants of high functional and statistical effects.MethodsWe performed exome sequencing and array-based genotype analyses of 1477 Ashkenazi Jewish individuals with CD and 2614 Ashkenazi Jewish individuals without CD (controls). To validate our findings, we performed genotype analyses of an additional 1515 CD cases and 7052 controls for frameshift mutations in the colony-stimulating factor 2-receptor ÎČ common subunit gene (CSF2RB). Intestinal tissues and blood samples were collected from patients with CD; lamina propria leukocytes were isolated and expression of CSF2RB and granulocyte-macrophage colony-stimulating factor-responsive cells were defined by adenomatous polyposis coli (APC) time-of-flight mass cytometry (CyTOF analysis). Variants of CSF2RB were transfected into HEK293 cells and the expression and functions of gene products were compared.ResultsIn the discovery cohort, we associated CD with a frameshift mutation in CSF2RB (P = 8.52 × 10(-4)); the finding was validated in the replication cohort (combined P = 3.42 × 10(-6)). Incubation of intestinal lamina propria leukocytes with granulocyte-macrophage colony-stimulating factor resulted in high levels of phosphorylation of signal transducer and activator of transcription (STAT5) and lesser increases in phosphorylation of extracellular signal-regulated kinase and AK straining transforming (AKT). Cells co-transfected with full-length and mutant forms of CSF2RB had reduced pSTAT5 after stimulation with granulocyte-macrophage colony-stimulating factor, compared with cells transfected with control CSF2RB, indicating a dominant-negative effect of the mutant gene. Monocytes from patients with CD who were heterozygous for the frameshift mutation (6% of CD cases analyzed) had reduced responses to granulocyte-macrophage colony-stimulating factor and markedly decreased activity of aldehyde dehydrogenase; activity of this enzyme has been associated with immune tolerance.ConclusionsIn a genetic analysis of Ashkenazi Jewish individuals, we associated CD with a frameshift mutation in CSF2RB. Intestinal monocytes from carriers of this mutation had reduced responses to granulocyte-macrophage colony-stimulating factor, providing an additional mechanism for alterations to the innate immune response in individuals with CD

    High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis.

    Get PDF
    Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD

    The Multiple Sclerosis Genomic Map: Role of peripheral immune cells and resident microglia in susceptibility

    No full text
    We assembled and analyzed genetic data of 47,351 multiple sclerosis (MS) subjects and 68,284 control subjects and establish a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 independent associations within the extended MHC. We used an ensemble of methods to prioritize up to 551 potentially associated MS susceptibility genes, that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we do find enrichment for MS genes in these brain - resident immune cells. Thus, while MS is most likely initially triggered by perturbation of peripheral immune responses the functional responses of microglia and other brain cells are also altered and may have a role in targeting an autoimmune process to the central nervous system. One Sentence Summary: We report a detailed genetic and genomic map of multiple sclerosis, and describe the role of putatively affected genes in the peripheral immune system and brain resident microglia

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    No full text
    INTRODUCTION: Multiple sclerosis (MS) is an inflammatory and degenerative disease of the central nervous system (CNS) that often presents in young adults. Over the past decade, certain elements of the genetic architecture of susceptibility have gradually emerged, but most of the genetic risk for MS remained unknown. RATIONALE: Earlier versions of the MS genetic map had highlighted the role of the adaptive arm of the immune system, implicating multiple different T cell subsets. We expanded our knowledge of MS susceptibility by performing a genetic association study in MS that leveraged genotype data from 47,429 MS cases and 68,374 control subjects. We enhanced this analysis with an in-depth and comprehensive evaluation of the functional impact of the susceptibility variants that we uncovered. RESULTS: We identified 233 statistically independent associations with MS susceptibility that are genome-wide significant. The major histocompatibility complex (MHC) contains 32 of these associations, and one, the first MS locus on a sex chromosome, is found in chromosome X. The remaining 200 associations are found in the autosomal non-MHC genome. Our genome-wide partitioning approach and large-scale replication effort allowed the evaluation of other variants that did not meet our strict threshold of significance, such as 416 variants that had evidence of statistical replication but did not reach the level of genome-wide statistical significance. Many of these loci are likely to be true susceptibility loci. The genome-wide and suggestive effects jointly explain ~48% of the estimated heritability for MS. Using atlases of gene expression patterns and epigenomic features, we documented that enrichment for MS susceptibility loci was apparent in many different immune cell types and tissues, whereas there was an absence of enrichment in tissue-level brain profiles. We extended the annotation analyses by analyzing new data generated from human induced pluripotent stem cell–derived neurons as well as from purified primary human astrocytes and microglia, observing that enrichment for MS genes is seen in human microglia, the resident immune cells of the brain, but not in astrocytes or neurons. Further, we have characterized the functional consequences of many MS susceptibility variants by identifying those that influence the expression of nearby genes in immune cells or brain. Last, we applied an ensemble of methods to prioritize 551 putative MS susceptibility genes that may be the target of the MS variants that meet a threshold of genome-wide significance. This extensive list of MS susceptibility genes expands our knowledge more than twofold and highlights processes relating to the development, maturation, and terminal differentiation of B, T, natural killer, and myeloid cells that may contribute to the onset of MS. These analyses focus our attention on a number of different cells in which the function of MS variants should be further investigated. Using reference protein-protein interaction maps, these MS genes can also be assembled into 13 communities of genes encoding proteins that interact with one another; this higher-order architecture begins to assemble groups of susceptibility variants whose functional consequences may converge on certain protein complexes that can be prioritized for further evaluation as targets for MS prevention strategies. CONCLUSION: We report a detailed genetic and genomic map of MS susceptibility, one that explains almost half of this disease’s heritability. We highlight the importance of several cells of the peripheral and brain resident immune systems—implicating both the adaptive and innate arms—in the translation of MS genetic risk into an auto-immune inflammatory process that targets the CNS and triggers a neurodegenerative cascade. In particular, the myeloid component highlights a possible role for microglia that requires further investigation, and the B cell component connects to the narrative of effective B cell–directed therapies in MS. These insights set the stage for a new generation of functional studies to uncover the sequence of molecular events that lead to disease onset. This perspective on the trajectory of disease onset will lay the foundation for developing primary prevention strategies that mitigate the risk of developing MS
    corecore