53 research outputs found

    Systemic fluoroquinolone prescriptions for hospitalized children in Belgium, results of a multicenter retrospective drug utilization study

    Get PDF
    Background: Fluoroquinolones (FQ) are increasingly prescribed for children, despite being labeled for only a limited number of labeled pediatric indications. In this multicenter retrospective drug utilization study, we analyzed indications for systemic FQ prescriptions in hospitalized children and the appropriateness of the prescribed dose. Methods: Using data obtained from electronic medical files, the study included all children who received a systemic FQ prescription in two Belgian university children's hospitals between 2010 and 2013. Two authors reviewed prescribed daily doses. Univariate and multivariate logistic regression models were used to analyze risk factors for inadequately dosing. Results262 FQ prescriptions for individual patients were included for analysis. 16.8% of these prescriptions were for labeled indications, and 35.1% were guided by bacteriological findings. Prescribed daily dose was considered to be inappropriate in 79 prescriptions (30.2%). Other FQ than ciprofloxacin accounted for 9 prescriptions (3.4%), of which 8 were correctly dosed. Underdosing represented 45 (56.9%) dosing errors. Infants and preschool children were at particular risk for dosing errors, with associated adjusted OR of 0.263 (0.097-0.701) and 0.254 (0.106-0.588) respectively. Conclusions: FQ were often prescribed off-label and not guided by bacteriological findings in our study population. Dosing errors were common, particularly in infants and preschool children. FQ prescriptions for children should be improved by specific pediatric antimicrobial stewardship teams. Furthermore, pharmacokinetic studies should optimise dosing recommendations for children

    Volumetric absorptive microsampling as an alternative sampling strategy for the determination of paracetamol in blood and cerebrospinal fluid

    Get PDF
    In the field of bioanalysis, dried matrix spot sampling is increasingly receiving interest, as this alternative sampling strategy offers many potential benefits over traditional sampling, including matrix volume-sparing properties. By using a microsampling strategy, e.g., volumetric absorptive microsampling (VAMS), the number of samples that can be collected from a patient can be increased, as a result of the limited sample volume that is required per sample. To date, no VAMS-based methods have been developed for the quantification of analytes in cerebrospinal fluid (CSF). The objective of this study was to develop and validate two LC-MS/MS methods for the quantification of paracetamol in dried blood and dried CSF, with both matrices sampled using VAMS. Both methods were fully validated based on internationally accepted guidelines. Paracetamol was chromatographically separated from its glucuronide and sulfate metabolites and no carry-over or unacceptable interferences were detected. The total precision (%RSD) was below 15% for all QC levels and accuracy (%bias) was below 7% (17% for the LLOQ of aqueous VAMS). The influence of the hematocrit on the recovery of blood VAMS samples appeared to be limited within the hematocrit range of 0.21 to 0.62. The blood VAMS samples were stable for 1week if stored at 50 degrees C, and for at least 8months when stored between -80 degrees C and room temperature. The aqueous VAMS samples were stable for at least 9months when stored between -80 and 4 degrees C, and for 1month when stored at room temperature. Application of the methods on external quality control material and analysis of patient samples demonstrated the validity and utility of the methods and provided a proof of concept for the analysis of CSF microsamples obtained via VAMS devices

    Dried blood microsamples : suitable as an alternative matrix for the quantification of paracetamol-protein adducts?

    Get PDF
    Paracetamol (acetaminophen, APAP) is the most frequently used analgesic drug worldwide. However, patients in several specific populations can have an increased exposure to toxic APAP metabolites. Therefore, APAP-protein adducts have been proposed as an alternative marker for the assessment of APAP intoxications and as an effective tool to study and steer APAP treatment in patients with an increased risk of APAP-induced liver damage. These adducts have been determined in plasma or serum as a matrix. Blood microsampling allows the determination of a variety of analytes, including protein adducts, in a drop of blood, facilitating convenient followup of patients in a home-sampling context, as well as repeated sampling of pediatric patients. We therefore evaluated the use of blood-based volumetric microsamples for the quantification of APAP-protein adducts. Quantitative methods for the determination of APAP-protein adducts in dried blood and dried plasma volumetric absorptive microsamples were developed and validated. Also a preliminary evaluation of pediatric patient dried blood microsamples was conducted. Method validation encompassed the evaluation of selectivity, carry over, calibration model, accuracy and precision, matrix effect, recovery and the effect of the hematocrit on the recovery, dilution integrity, and stability. All pre-set acceptance criteria were met, except for stability. Spiking of blank blood with APAP revealed a concentration-dependent ex vivo formation of APAP-protein adducts, resulting in a response for the measurand APAP-Cys, with an apparent role for the red blood cell fraction. Analysis of authentic samples, following intake of APAP at therapeutic dosing, revealed much higher APAP-Cys concentrations in dried blood vs. dried plasma samples, making interpretation of the results in the context of published intervals difficult. In addition, in contrast to what was observed during method validation, the data obtained for the patient samples showed a high and unacceptable variation. We conclude that, for a combination of reasons, dried blood is not a suitable matrix for the quantification of APAP-protein adducts via the measurement of the APAP-Cys digestion product. The collection of plasma or serum, either in the form of a liquid sample or a dried microsample for this purpose is advised

    Volumetric absorptive microsampling as alternative sampling technique for renal function assessment in the paediatric population using iohexol

    Get PDF
    The glomerular filtration rate (GFR) is considered the best overall index for the renal function. Currently, one of the most promising exogenous markers for GFR assessment is iohexol. In this study, the suitability of volumetric absorptive microsampling (VAMS) as alternative for the conventional blood sampling and quantification of iohexol in paediatric plasma was assessed. Therefore, a new, fully validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed. Subsequently, the clinical suitability was evaluated in 20 paediatric patients by comparing plasma iohexol concentrations and associated GFR values obtained by the VAMS method with those obtained by conventional blood sampling and quantification of iohexol in plasma. The developed, simple and cost-effective LC-MS/MS-method fulfilled all pre-set validation acceptance criteria. Iohexol could be accurately quantified within a haematocrit range of 20?60% and long-term stability of iohexol in VAMS was demonstrated up to 245 days under different storage temperatures. Both iohexol plasma concentrations (r = 0.98, mean bias: -4.20%) and derived GFR values (r = 0.99; mean bias: 1.31%), obtained by a conventional plasma and the VAMS method, demonstrated good correlation and acceptable bias. The agreement between the two methods was especially good for GFR values higher than 60 mL/min/1.73 m2. Nevertheless, for GFR values <60 mL/min/1.73 m2 the accuracy compared to the plasma method was lower. However, small adjustments to the sampling protocol could probably solve this problem
    corecore