Kinetic modeling as guide for dialysis prescription in acute neonatal hyperammonaemia: an example using CarpeDiem and Fresenius 4008 machine

Snauwaert Evelien¹, De Rudder Jonathan², Verloo Patrick³, Prytula Agnieszka¹, Dossche Lien¹, Dehoorne Joke¹, Dhondt Evelyn⁴, Raes Ann¹, Van Biesen Wim² and Eloot Sunny²

¹Department of Paediatric Nephrology, Ghent University Hospital, Belgium ²Department of Nephrology, Ghent University Hospital, Belgium ³Department of Paediatric Metabolic Disease, Ghent University Hospital, Belgium ⁴Department of Paediatric Intensive Care, Ghent University Hospital, Belgium

Corresponding author: Snauwaert Evelien, evelien.snauwaert@uzgent.be, +32 476 466 468

Background

Acute neonatal hyperammonaemia is associated with poor neurological outcomes and high mortality. As these outcomes are inversely related to the duration of the hyperammonaemic coma, prompt management that guarantees a fast decline in serum ammonia is crucial. Using our experience with different dialysis machines, we developed a kinetic model for acute neonatal hyperammonaemia to draft a dialysis prescription protocol that can ensure a fast decline in serum ammonia (goal:<400µmol/L in <4hours).

Methods

From all dialysis sessions performed in 2020 in our centre in newborns with hyperammonaemia, dialyzer clearance and extraction ratio were calculated using intradialytic ammonia concentration-time curves. A single compartment kinetic model with a distribution volume of 60%-80% of body weight was assumed, and generation was derived from the interdialytic concentration increase.. The calibrated single compartmental model was further used to simulate serum ammonia decline in infants of 2-5kg for different ammonia start concentrations (3000, 1500, 800, 400, 200 μ mol/L), dialysis machines/dialyzers and settings (blood flow Q_B 30-50mL/min).

Results

Four patients (3.24 ± 0.40 kg) underwent 13 dialyses: 5 with the 4008 machine and FXPaed dialyzer (Fresenius Medical Care, Germany); and 8 with the CarpeDiem machine (50% with $0.15m^2$ respectively $0.25m^2$ dialyzer) (Medtronic, USA). Q_B was 30-35mL/min (4008-FXPaed), 22-35mL/min (CarpeDiem 0.15), and 30-34mL/min (CarpeDiem 0.25). Extraction ratios were $38\pm5\%$ for 4008-FXPaed, $10\pm3\%$ and $13\pm3\%$ in the CarpeDiem $0.15m^2$ and $0.25m^2$ dialyzer. Generation was $0.40\pm0.25\mu$ mol/min, with no observed impact on dialyzer clearance and extraction ratio. For start concentrations of 3000μ mol/L (3kg), the time to drop < 400μ mol/L was, with 4008-FXPaed, 315 and 190min for a Q_B of 30 and 50mL/min, respectively, while it was 205 and 125min for a start concentrations > 800μ mol/L, and 110 and 65min for a start concentration of 800μ mol/L. In general, for start concentrations > 800μ mol/L in 3kg child, the CarpeDiem machine was found inadequate to decrease serum ammonia in <4h. Increasing body weight (5kg) resulted in longer time intervals to reach target.

Conclusion

Kinetic models can guide our management decisions and treatment protocols by predicting which treatment goals can be reached with a particular dialysis prescription, available resources and/or dialysis modality.