11 research outputs found

    In-vitro transdentinal diffusion of monomers from adhesives

    No full text
    OBJECTIVES: Biocompatibility of adhesives is important since adhesives may be applied on dentin near the pulp. Accurate knowledge of the quantity of monomers reaching the pulp is important to determine potential side effects. The aim of this study was to assess the transdentinal diffusion of residual monomers from dental adhesive systems using an in-vitro pulp chamber model. METHODS: Dentin disks with a thickness of 300 μm were produced from human third molars. These disks were fixed between two open glass tubes, representing an in-vitro pulp chamber. The etch-and-rinse adhesive OptiBond FL and the self-etch adhesive Clearfil SE Bond were applied to the dentin side of the disks, while on in the pulpal side, the glass tube was filled with 600 μl water. The transdentinal diffusion of different monomers was quantified using ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS: The monomers HEMA, CQ, BisGMA, GPDM, 10-MDP and UDMA eluted from the dental materials and were able to diffuse through the dentin disks to a certain extent. Compounds with a lower molecular weight (uncured group: HEMA 7850 nmol and CQ 78.2 nmol) were more likely to elute and diffuse compared to monomers with a higher molecular weight (uncured group: BisGMA 0.42 nmol). When the adhesives were left uncured, diffusion was up to 10 times higher compared to the cured conditions. CONCLUSIONS: This in-vitro research resulted in the quantification of various monomers able to diffuse through dentin and therefore contributes to a more detailed understanding about the potential exposure of the dental pulp to monomers from dental adhesives. CLINICAL SIGNIFICANCE: Biocompatibility of adhesives is important since adhesives may be applied on dentin near the pulp, where tubular density and diameter are greatest.status: publishe

    Monomer release from direct and indirect adhesive restorations: A comparative in vitro study

    No full text
    OBJECTIVES: Indirect dental restorations produced by computer-aided design and computer-aided manufacturing (CAD/CAM) are relatively new in daily dental practice. The aim of the present study was to compare the monomer release between direct composite restorations and indirect CAD/CAM produced restorations (composite, ceramic and hybrid). METHODS: Identical crown restorations were prepared from three indirect materials (Cerasmart, Vitablocs Mark II and Vita Enamic) and one composite material (Clearfil AP-X). For each restoration, eight crown restorations were luted onto tooth samples and immersed into 2.5mL of an aqueous extraction solvent. Additionally, three nonluted crowns of each restoration type were also immersed in the extraction solvent, and served as controls. Every week, the extraction solvent was collected and refreshed, during a period of 8 weeks. The released monomers were quantified using ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS: Indirect restorations release significantly lower quantities of residual monomers than direct restorations, and the monomers released by the luted indirect restorations are mainly derived from the composite material used for cementation. The quantity of monomers released by direct restorations greatly depended on the time of light polymerization. SIGNIFICANCE: In terms of monomer release, indirect restorations are a good alternative to direct restorations to limit patient exposure to residual monomers. It is important to ideally design the fit of indirect restoration so that the cement layer is as thin as possible and the monomer release from this cement layer remains as low as possible.status: publishe

    Freshly-mixed and setting calcium-silicate cements stimulate human dental pulp cells

    No full text
    OBJECTIVES: To evaluate the effect of the eluates from 3 freshly-mixed and setting hydraulic calcium-silicate cements (hCSCs) on human dental pulp cells (HDPCs) and to examine the effect of a newly developed hCSC containing phosphopullulan (PPL) on HDPCs. METHODS: Human dental pulp cells, previously characterized as mesenchymal stem cells, were used. To collect the eluates, disks occupying the whole surface of a 12-well plate were prepared using an experimental hCSC containing phosphopullulan (GC), Nex-Cem MTA (GC), Biodentine (Septodont) or a zinc-oxide (ZnO) eugenol cement (material-related negative control). Immediately after preparing the disks (non-set), 3ml of Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS) were added. The medium was left in contact with the disks for 24h before being collected. Four different dilutions were prepared (100%, 50%, 25% and 10%) and cell-cytotoxicity, cell-proliferation, cell-migration and odontogenic differentiation were tested. The cell-cytotoxicity and cell-proliferation assays were performed by XTT-colorimetric assay at different time points. The cell-migration ability was tested with the wound-healing assay and the odontogenic differentiation capacity of hCSCs on HDPCs was tested with RT-PCR. RESULTS: Considering all experimental data together, the eluates from 3 freshly-mixed and setting hCSCs appeared not cytotoxic toward HDPCs. Moreover, all three cements stimulated proliferation, migration and odontogenic differentiation of HDPCs. SIGNIFICANCE: The use of freshly-mixed and setting hCSCs is an appropriate approach to test the effect of the materials on human dental pulp cells. The experimental material containing PPL is non-cytotoxic and positively stimulates HDPCs.status: publishe

    A novel high sensitivity UPLC-MS/MS method for the evaluation of bisphenol A leaching from dental materials

    No full text
    There is a growing necessity to acquire more profound knowledge on the quantity of eluates from resin-based dental materials, especially with regard to bisphenol A (BPA). The aim of the present study was to develop a highly sensitive method to characterize the short-term release of BPA in saliva with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), using an extraction step and additional derivatization of BPA with pyridine-3-sulfonyl chloride. Light-cured resin-based composites were incubated at 37 °C in 1 mL artificial saliva, which was refreshed daily for one week. The final protocol allows accurate quantification of very low levels of BPA in samples of artificial saliva (i.e. 1.10 pmol BPA/mL or 250 pg/mL). The daily BPA-release from dental composites, ranging from 1.10 to 7.46 pmol BPA/mL, was characterized over a period of 7 days. The highest total amount of BPA was released from Solitaire 2 (24.72 ± 2.86 pmol), followed by G-ænial Posterior (15.51 ± 0.88 pmol) and Filtek Supreme XTE (12.00 ± 1.31 pmol). In contrast, only trace amounts of BPA were released from Ceram.x Universal. This UPLC-MS/MS method might be used for clinical research focusing on the evaluation of the clinical relevance of BPA release from dental materials.status: publishe

    Epigenetic effects of carbon nanotubes in human monocytic cells

    No full text
    Carbon nanotubes (CNTs) are fibrous carbon-based nanomaterials with a potential to cause carcinogenesis in humans. Alterations in DNA methylation on cytosine-phosphate-guanidine (CpG) sites are potential markers of exposure-induced carcinogenesis. This study examined cytotoxicity, genotoxicity and DNA methylation alterations on human monocytic cells (THP-1) after incubation with single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). Higher cytotoxicity and genotoxicity were observed after incubation with SWCNTs than incubation with MWCNTs. At the selected concentrations (25 and 100 µg/ml), DNA methylation alterations were studied. Liquid chromatography-mass spectrometry (LC-MS/MS) was used to assess global DNA methylation, and Illumina 450K microarrays were used to assess methylation of single CpG sites. Next, we assessed gene promoter-specific methylation levels. We observed no global methylation or hydroxymethylation alterations, but on gene-specific level, distinct clustering of CNT-treated samples were noted. Collectively, CNTs induced gene promoter-specific altered methylation and those 1127 different genes were identified to be hypomethylated. Differentially methylated genes were involved in several signalling cascade pathways, vascular endothelial growth factor and platelet activation pathways. Moreover, possible contribution of the epigenetic alterations to monocyte differentiation and mixed M1/M2 macrophage polarisation were discussed.status: publishe
    corecore