9 research outputs found

    Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria

    No full text
    Non-model bacteria like Pseudomonas putida, Lactococcus lactis and other species have unique and versatile metabolisms, offering unique opportunities for Synthetic Biology (SynBio). However, key genome editing and recombineering tools require optimization and large-scale multiplexing to unlock the full SynBio potential of these bacteria. In addition, the limited availability of a set of characterized, species-specific biological parts hampers the construction of reliable genetic circuitry. Mining of currently available, diverse bacteriophages could complete the SynBio toolbox, as they constitute an unexplored treasure trove for fully adapted metabolic modulators and orthogonally-functioning parts, driven by the longstanding co-evolution between phage and host.status: publishe

    Assessing the Orthogonality of Phage-Encoded RNA Polymerases for Tailored Synthetic Biology Applications in <i>Pseudomonas</i> Species

    No full text
    The phage T7 RNA polymerase (RNAP) and lysozyme form the basis of the widely used pET expression system for recombinant expression in the biotechnology field and as a tool in microbial synthetic biology. Attempts to transfer this genetic circuitry from Escherichia coli to non-model bacterial organisms with high potential have been restricted by the cytotoxicity of the T7 RNAP in the receiving hosts. We here explore the diversity of T7-like RNAPs mined directly from Pseudomonas phages for implementation in Pseudomonas species, thus relying on the co-evolution and natural adaptation of the system towards its host. By screening and characterizing different viral transcription machinery using a vector-based system in P. putida., we identified a set of four non-toxic phage RNAPs from phages phi15, PPPL-1, Pf-10, and 67PfluR64PP, showing a broad activity range and orthogonality to each other and the T7 RNAP. In addition, we confirmed the transcription start sites of their predicted promoters and improved the stringency of the phage RNAP expression systems by introducing and optimizing phage lysozymes for RNAP inhibition. This set of viral RNAPs expands the adaption of T7-inspired circuitry towards Pseudomonas species and highlights the potential of mining tailored genetic parts and tools from phages for their non-model host

    SEVAtile : a standardised DNA assembly method optimised for Pseudomonas

    No full text
    To meet the needs of synthetic biologists, DNA assembly methods have transformed from simple 'cut-and-paste' procedures to highly advanced, standardised assembly techniques. Implementing these standardised DNA assembly methods in biotechnological research conducted in non-model hosts, including Pseudomonas putida and Pseudomonas aeruginosa, could greatly benefit reproducibility and predictability of experimental results. SEVAtile is a Type IIs-based assembly approach, which enables the rapid and standardised assembly of genetic parts - or tiles - to create genetic circuits in the established SEVA-vector backbone. Contrary to existing DNA assembly methods, SEVAtile is an easy and straightforward method, which is compatible with any vector, both SEVA- and non-SEVA. To prove the efficiency of the SEVAtile method, a three-vector system was successfully generated to independently co-express three different proteins in P. putida and P. aeruginosa. More specifically, one of the vectors, pBGDes, enables genomic integration of assembled circuits in the Tn7 landing site, while self-replicatory vectors pSTDesX and pSTDesR enable inducible expression from the XylS/Pm and RhaRS/PrhaB expression systems, respectively. Together, we hope these vector systems will support research in both the microbial SynBio and Pseudomonas field

    A SEVA-based, CRISPR-Cas3-assisted genome engineering approach for <i>Pseudomonas </i>with efficient vector curing

    No full text
    The development of CRISPR-Cas-based engineering technologies has revolutionized the microbial biotechnology field. Over the years, the Class II Type II CRISPR-Cas9 system has become the gold standard for genome editing in many bacterial hosts. However, the Cas9 system does not allow efficient genomic integration in Pseudomonas putida, an emerging Synthetic Biology host, without the assistance of lambda-Red recombineering. In this work, we utilize the alternative Class I Type I-C CRISPR-Cas3 system from Pseudomonas aeruginosa as a highly efficient genome editing tool for P. putida and P. aeruginosa. This system consists of two vectors, one encoding the Cas genes, CRISPR array and targeting spacer, and a second Standard European Vector Architecture vector, containing the homologous repair template. Both vectors are Golden Gate compatible for rapid cloning and are available with multiple antibiotic markers, for application in various Gram-negative hosts and different designs. By employing this Cas3 system, we successfully integrated an 820-bp cassette in the genome of P. putida and performed several genomic deletions in P. aeruginosa within a week, with an efficiency of &gt;83% for both hosts. Moreover, by introducing a universal self-targeting spacer, the Cas3 system rapidly cures all helper vectors, including itself, from the host strain in a matter of days. As such, this system constitutes a valuable engineering tool for Pseudomonas, to complement the existing range of Cas9-based editing methods, and facilitates genomic engineering efforts of this importan

    The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in Staphylococcus aureus by Targeting the Enoyl-Acyl Carrier Protein Binding Site of FabI

    No full text
    The enoyl-acyl carrier protein reductase enzyme FabI is essential for fatty acid biosynthesis in Staphylococcus aureus and represents a promising target for the development of novel, urgently needed anti-staphylococcal agents. Here, we elucidate the mode of action of the kalimantacin antibiotics, a novel class of FabI inhibitors with clinically-relevant activity against multidrug-resistant S. aureus. By combining X-ray crystallography with molecular dynamics simulations, in vitro kinetic studies and chemical derivatization experiments, we characterize the interaction between the antibiotics and their target, and we demonstrate that the kalimantacins bind in a unique conformation that differs significantly from the binding mode of other known FabI inhibitors. We also investigate mechanisms of acquired resistance in S. aureus and identify key residues in FabI that stabilize the binding of the antibiotics. Our findings provide intriguing insights into the mode of action of a novel class of FabI inhibitors that will inspire future anti-staphylococcal drug development.status: publishe
    corecore