42 research outputs found

    Vitamin D Levels in Asymptomatic Adults-A Population Survey in Karachi, Pakistan

    Get PDF
    Background: It is well established that low levels of 25(OH) Vitamin D (/dL) are a common finding world over, affecting over a billion of the global population. Our primary objective was to determine the prevalence of vitamin D deficiency and insufficiency in the asymptomatic adult population of Karachi, Pakistan and the demographic, nutritional and co-morbidity characteristics associated with serum vitamin D levels. Methods: A cross-sectional population survey was conducted at two spaced out densely populated areas of the city. Serum levels of 25OH vitamin D were measured and GFR as renal function was assessed by using 4 variable MDRD formula. Results: Our sample of 300 had a median age of 48(interquartile range 38-55) years. The median level of serum vitamin D was 18.8 (IQ range 12.65-24.62) ng/dL. A total of 253 (84.3%) respondents had low levels (/dL) of 25OH vitamin D. Serum PTH and vitamin D were negatively correlated (r = -0.176, p = 0.001). The median PTH in the vitamin D sufficiency group was 38.4 (IQ range28.0-48.8)pg/mL compared with 44.4 (IQ range 34.3-56.8) pg/mL in the deficiency group (p = 0.011).The median serum calcium level in the sample was 9.46(IQ range 9.18-9.68) ng/dL. Low serum levels of vitamin D were not associated with hypertension (p = 0.771) or with an elevated spot blood pressure (p = 0.164).In our sample 75(26%) respondents had an eGFR corresponding to stage 2 and stage 3 CKD. There was no significant correlation between levels of vitamin D and eGFR (r = -0.127, p-value = 0.277). Respondents using daily vitamin D supplements had higher 25 OH vitamin D levels (p-value = 0.021). Conclusion: We observed a high proportion of the asymptomatic adult population having low levels of vitamin D and subclinical deterioration of eGFR. The specific cause(s) for this observed high prevalence of low 25OH vitamin D levels are not clear and need to be investigated further upon

    Dietary Vitamin D3 Supplements Reduce Demyelination in the Cuprizone Model

    Get PDF
    Vitamin D is emerging as a probably important environmental risk factor in multiple sclerosis, affecting both susceptibility and disease progression. It is not known to what extent this effect is due to a modulation of peripheral lymphocyte function, or to intrathecal effects of vitamin D. We investigated the effect of dietary vitamin D3 content on de/remyelination in the cuprizone model, which is a well established toxic model of demyelination, with no associated lymphocyte infiltration. The mice received diets either deficient of (<50 IU/kg), or supplemented with low (500 IU/kg), high (6200 IU/kg) or very high (12500 IU/kg) amounts of vit D3. Cuprizone (0.2%) was added to the diet for six weeks, starting two weeks after onset of the experimental diets. Mouse brain tissue was histopathologically evaluated for myelin and oligodendrocyte loss, microglia/macrophage activation, and lymphocyte infiltration after six weeks of cuprizone exposure, and two weeks after discontinuation of cuprizone exposure. High and very high doses of vitamin D3 significantly reduced the extent of white matter demyelination (p = 0.004) and attenuated microglia activation (p = 0.001). No differences in the density of oligodendrocytes were observed between the diet groups. Two weeks after discontinuation of cuprizone exposure, remyelination was only detectable in the white matter of mice receiving diets deficient of or with low vitamin D3 content. In conclusion, high dietary doses of vitamin D3 reduce the extent of demyelination, and attenuate microglia activation and macrophage infiltration in a toxic model of demyelination, independent of lymphocyte infiltration

    Lack of Evidence for Neonatal Misoprostol Neurodevelopmental Toxicity in C57BL6/J Mice

    Get PDF
    Misoprostol is a synthetic analogue of prostaglandin E1 that is administered to women at high doses to induce uterine contractions for early pregnancy termination and at low doses to aid in cervical priming during labor. Because of the known teratogenic effects of misoprostol when given during gestation and its effects on axonal growth in vitro, we examined misoprostol for its potential as a neurodevelopmental toxicant when administered to neonatal C57BL6/J mice. Mice were injected subcutaneously (s.c.) with 0.4, 4 or 40 µg/kg misoprostol on postnatal day 7, the approximate developmental stage in mice of human birth, after which neonatal somatic growth, and sensory and motor system development were assessed. These doses were selected to span the range of human exposure used to induce labor. In addition, adult mice underwent a battery of behavioral tests relevant to neurodevelopmental disorders such as autism including tests for anxiety, stereotyped behaviors, social communication and interactions, and learning and memory. No significant effects of exposure were found for any measure of development or behavioral endpoints. In conclusion, the results of the present study in C57BL/6J mice do not provide support for neurodevelopmental toxicity after misoprostol administration approximating human doses and timed to coincide with the developmental stage of human birth

    Vitamin D3 Deficiency Differentially Affects Functional and Disease Outcomes in the G93A Mouse Model of Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by motor neuron death in the central nervous system. Vitamin D supplementation increases antioxidant activity, reduces inflammation and improves motor neuron survival. We have previously demonstrated that vitamin D3 supplementation at 10× the adequate intake improves functional outcomes in a mouse model of ALS

    Epidemiology and etiology of Parkinson’s disease: a review of the evidence

    Full text link
    corecore