108,725 research outputs found

    Spacetime Supersymmetry in a nontrivial NS-NS Superstring Background

    Get PDF
    In this paper we consider superstring propagation in a nontrivial NS-NS background. We deform the world sheet stress tensor and supercurrent with an infinitesimal B_{\mu\nu} field. We construct the gauge-covariant super-Poincare generators in this background and show that the B_{\mu\nu} field spontaneously breaks spacetime supersymmetry. We find that the gauge-covariant spacetime momenta cease to commute with each other and with the spacetime supercharges. We construct a set of "magnetic" super-Poincare generators that are conserved for constant field strength H_{\mu\nu\lambda}, and show that these generators obey a "magnetic" extension of the ordinary supersymmetry algebra.Comment: 13 pages, Latex. Published versio

    Institutional Characteristics and the Relationship Between Student's Last-Year University and Final-Year Secondary School Academic Performance.

    Get PDF
    A study of academic results of a student cohort in a diverse faculty of a large multi-campus university indicates that students' first-year performance at university is related to their prior academic achievement at secondary school, both overall and discipline specific, but that the extent and form of the relationship can vary by subject area and institutional secondary school and university characteristics. This may have implications for university selection and specification of prerequisite subjects for courses.EDUCATION ; STUDENTS ; INSTITUTION BUILDING

    The Superposition Principle of Waves Not Fulfilled under M. W. Evans' O(3) Hypothesis

    Get PDF
    In 1992 M.W. Evans proposed a so-called O(3) symmetry of electromagnetic fields by adding a constant longitudinal "ghost field" to the well-known transversal plane em waves. He considered this symmetry as a new law of electromagnetics. Later on, since 2002, this O(3) symmetry became the center of his Generally Covariant Unified Field Theory which he recently renamed as ECE Theory. One of the best-checked laws of electrodynamics is the principle of linear superposition of electromagnetic waves, manifesting itself in interference phenomena. Its mathematical equivalent is the representation of electric and magnetic fields as vectors. By considering the superposition of two phase-shifted waves we show that the superposition principle is incompatible with M.W. Evans' O(3) hypothesis.Comment: 5 pages, no figure

    Geometry and Dynamics with Time-Dependent Constraints

    Get PDF
    We describe how geometrical methods can be applied to a system with explicitly time-dependent second-class constraints so as to cast it in Hamiltonian form on its physical phase space. Examples of particular interest are systems which require time-dependent gauge fixing conditions in order to reduce them to their physical degrees of freedom. To illustrate our results we discuss the gauge-fixing of relativistic particles and strings moving in arbitrary background electromagnetic and antisymmetric tensor fields.Comment: 8 pages, Plain TeX, CERN-TH.7392/94 and MPI-PhT/94-4

    Commuting charges and symmetric spaces

    Get PDF
    Every classical sigma-model with target space a compact symmetric space G/HG/H (with GG classical) is shown to possess infinitely many local, commuting, conserved charges which can be written in closed form. The spins of these charges run over a characteristic set of values, playing the role of exponents of G/HG/H, and repeating modulo an integer hh which plays the role of a Coxeter number.Comment: LaTeX, 16 pages; v2: footnote adde

    In Synch but Not in Step: Circadian Clock Circuits Regulating Plasticity in Daily Rhythms

    Get PDF
    The suprachiasmatic nucleus (SCN) is a network of neural oscillators that program daily rhythms in mammalian behavior and physiology. Over the last decade much has been learned about how SCN clock neurons coordinate together in time and space to form a cohesive population. Despite this insight, much remains unknown about how SCN neurons communicate with one another to produce emergent properties of the network. Here we review the current understanding of communication among SCN clock cells and highlight a collection of formal assays where changes in SCN interactions provide for plasticity in the waveform of circadian rhythms in behavior. Future studies that pair analytical behavioral assays with modern neuroscience techniques have the potential to provide deeper insight into SCN circuit mechanisms

    The Lee-Yang theory of equilibrium and nonequilibrium phase transitions

    Full text link
    We present a pedagogical account of the Lee-Yang theory of equilibrium phase transitions and review recent advances in applying this theory to nonequilibrium systems. Through both general considerations and explicit studies of specific models, we show that the Lee-Yang approach can be used to locate and classify phase transitions in nonequilibrium steady states.Comment: 24 pages, 7 papers, invited paper for special issue of The Brazilian Journal of Physic
    • 

    corecore