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Abstract

We describe how geometrical methods can be applied to a system with explicitly time-
dependent second-class constraints so as to cast it in Hamiltonian form on its physical
phase space. Examples of particular interest are systems which require time-dependent
gauge fixing conditions in order to reduce them to their physical degrees of freedom. To
illustrate our results we discuss the gauge-fixing of relativistic particles and strings moving
in arbitrary background electromagnetic and antisymmetric tensor fields.
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1. Introduction

A Hamiltonian dynamical system can be described geometrically by a phase space manifold
Γ (of dimension 2d say) equipped with a symplectic form ω and a Hamiltonian function H
(see Abraham and Marsden (1978) and Arnol’d (1978)). The condition that ω is symplectic
means that it is a non-degenerate closed two-form, so it can be used to introduce a Poisson
bracket { , } on Γ. The evolution of the system in time t is given by a particular set of
trajectories on Γ, parametrized by t, such that Hamilton’s equation

df

dt
=
∂f

∂t
+ {f,H} (1)

holds for any time-dependent function f on Γ.
Since the seminal work of Dirac (1950,1958,1964) there has been intensive study of

systems of this type which can be consistently constrained to some physical phase space
manifold Γ∗ (of dimension 2n say) which is embedded in Γ in a manner we now describe. In
the most general case the embedding of Γ∗ in Γ can depend on time and it must therefore
be defined by a family of maps

ϕt : Γ∗ → Γ , (2)

depending smoothly on t, each of which is a diffeomorphism onto its image Xt ⊂ Γ. We
assume that each of the trajectories on Γ for which (1) holds has the property that it
always lies in the subspaces Xt for each t, or else that it always lies in the complements of
these spaces. It is clear that trajectories of the former type correspond exactly under the
embedding (2) to trajectories on Γ∗, and one can attempt to reformulate the dynamics for
this subclass of trajectories in a manner which is intrinsic to Γ∗.

We define ω∗ on Γ∗ at time t by pulling back ω using ϕt and we assume that this
is also a symplectic form (albeit a time-dependent one in general). We can then use ω∗

to introduce the Dirac bracket { , }∗ on Γ∗. The key issue which we shall address here is
whether, for a given choice of embeddings (2), one can find a Hamiltonian function H∗

such that Hamilton’s equation

df

dt
=
∂f

∂t
+ {f,H∗}∗ (3)

holds for any time-dependent function f on Γ∗. When the embeddings (2) are independent
of time, (3) follows easily from (1) with H∗ = H. In the general case, however, the dynam-
ics on Γ∗ is determined not just by the dynamics on Γ but also by the time-dependence of
the embeddings ϕt, and under these circumstances it is non-trivial to determine whether
(3) holds for some function H∗.

The most compelling reason for studying this general situation is the fact that gauge
choices with explicit time dependence are essential in order to restrict systems which are
invariant under time-reparametrizations, such as the relativistic particle, string or general
relativity, to their physical degrees of freedom (but see Henneaux et al (1992) for possible
modifications of the action to allow other gauge choices). Here we summarize the solution
of this problem given in Evans and Tuckey (1993) and we clarify some related issues.
(We have recently learned that Mukunda (1980) has previously obtained results which are
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locally equivalent to ours using an algebraic approach. Related work from the Lagrangian
point of view appears in (Rañada 1994).) We then give some new examples, extending the
treatment of the relativistic particle in a background field (Evans 1993) to the case of a
string in an arbitrary antisymmetric tensor background.

2. Extended phase space and constrained dynamics

We define extended phase space to be Γ̄ = Γ × R, where the second factor is time. We
can, in a natural way, regard H and ω as living on Γ̄ (by pulling back using the projection
map) and we define the contact form on Γ̄ to be

Ω = ω + dH ∧ dt . (4)

(In Evans and Tuckey (1993) Ω was called the Poincaré-Cartan two-form; in Abraham and
Marsden (1978) Ω is introduced as an example of a contact structure.) Any trajectory on
Γ parametrized by t is clearly equivalent to a trajectory on Γ̄ with parameter s chosen
such that dt/ds is nowhere zero. Let V be the tangent vector to the trajectory on Γ̄. Then
Hamilton’s equation (1) is precisely the condition

i(V )Ω = 0 (5)

(where i(V ) denotes interior multiplication of a form by the vector field V ).
When the system is constrained we can similarly define extended physical phase space

to be Γ̄∗ = Γ∗×R. The family of embeddings (2) is equivalent to the single embedding

ϕ̄ : Γ̄∗ → Γ̄ , ϕ̄(x, t) = (ϕt(x), t) , (6)

which is a diffeomorphism onto its image X̄ = {(x, t) : x ∈ Xt, t ∈ R} ⊂ Γ̄ (assuming, as
stated earlier, that ϕt varies smoothly with t). Define the form Ω∗ on Γ̄∗ to be the pull
back of Ω using ϕ̄. In general this has the structure

Ω∗ = ω∗ + (dH + Y ) ∧ dt (7)

for some one-form Y . (Here we use the fact that any time-dependent form on Γ∗ can
be regarded as a smooth form on Γ̄∗; when the form is time-independent this reduces to
pulling back using the projection map.)

Any solution of Hamilton’s equation (1) which lies in X̄ clearly corresponds to a
trajectory in Γ̄∗ with tangent vector V ∗ which satisfies

i(V ∗) Ω∗ = 0 . (8)

By comparison with (4) and (5) we see that Hamilton’s equation (3) holds on Γ∗ if and
only if

Y = dK mod dt and then H∗ = H +K (9)

for some function K on Γ̄∗. One can show that this holds locally (ie. in any contractible
region on Γ∗) if and only if ω∗ is independent of time on Γ∗, a fact which will prove useful
later.
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To discuss specific examples it is convenient to introduce on Γ local coordinates zM,
M = 1, . . . , 2d. The subsets Xt ⊂ Γ are defined by a set of time-dependent constraint func-
tions ψI(zM, t), I = 1, . . . , 2(d−n), which are, in the language of Dirac (1950,1958,1964),
second-class. The fact that these constraint functions are preserved in time is equivalent
to our initial assumption that there exists a subset of trajectories confined to the sub-
spaces Xt. The condition that the constraint functions are second-class is equivalent to
our assumption that the form ω∗ is symplectic.

If ξA, A = 1, . . . , 2n, are local coordinates on Γ∗ then the embeddings ϕt or ϕ̄ allow
us to regard the zM as time-dependent functions of these variables on X̄, and we have the
explicit expression

Y = − ∂zM

∂t

∂zN

∂ξA
ωMN dξA = −ωMN

∂zM

∂t
dzN mod dt (10)

for the one-form appearing in (9). It is convenient in practice to specify ϕt or ϕ̄ by giving
explicit expressions for a set of functions ξA(zM, t), which we call physical variables; on
restriction to X̄ these functions define (the inverses of) these embeddings in terms of the
local coordinates.

3. Remarks

Our result (9) establishes necessary and sufficient conditions for a family of embeddings
ϕt, or a choice of physical variables ξA(zM, t), to result in a Hamiltonian time-evolution
equation (3) on Γ∗. For a given set of constraint subspaces Xt, or equivalently a set of
constraint functions ψI(zM, t), a family of embeddings or physical variables having this
property always exists locally. This follows from Darboux’s Theorem, which tells us that
locally we can find embeddings ϕt or choose coordinates (ξA) = (qα, pα) on Γ∗ such that
ω∗ = dqα ∧ dpα. Since this expression is manifestly independent of time on Γ∗, it satisfies
the criterion which we gave following (9). On the other hand, there are clearly many
embeddings or choices of physical variables for which (3) will not hold, as can be seen
by performing an arbitrary time-dependent coordinate transformation to make ω∗ time-
dependent.

Our result does not tell us how to explicitly construct a set of embeddings or physical
variables with the required property, and in general this remains an open problem. A
partial result in this direction is case (B) of Evans (1991). This applies to a system
with time-independent gauge symmetry generators which has imposed on it a set of time-
dependent gauge-fixing conditions involving some subset of canonical variables which all
commute under the Poisson bracket. It is worth pointing out that if these canonical
variables are regarded as configuration space coordinates in some equivalent Lagrangian
description, then the result in question can also be obtained by first gauge-fixing the
Lagrangian and then passing to the Hamiltonian formalism. The new examples we shall
present below lie outside the scope of case (B) of Evans (1991). Thus the result (9) is still
useful for finding good sets of physical variables, even though it offers no general method
for doing so.

Finally we emphasize that our main motivation for the work summarized here is the
reduced phase space approach to the canonical quantisation of systems which require time-
dependent gauge choices. Even at the classical level, a system whose time evolution is not
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described by an equation of the form of (3) falls outside the realm of conventional Hamil-
tonian mechanics. In passing to the quantum theory, (3) becomes the Heisenberg equation
of motion, which guarantees the existence of a unitary time evolution operator. In the
absence of a classical evolution equation of the form of (3), Gitman and Tyutin (1990a)
have given an alternative prescription for the Heisenberg quantum evolution equation, in
which extra terms appearing on the right hand side of (3) are taken over. This approach
is complicated by the difficulty in obtaining an explicitly unitary time evolution. The
consideration of simple examples such as the relativistic particle in an arbitrary back-
ground electromagnetic field (Evans 1993) reveals that our approach can be much simpler
– compare with Gitman and Tyutin (1990b), Gavrilov and Gitman (1993). Batalin and
Lyakovich (1991) have also considered the quantization of systems with time-dependent
Hamiltonian and constraints.

4. Examples

We shall now apply our result (9) to discuss the gauge-fixing of relativistic particles and
strings moving in d-dimensional Minkowski space-time with background gauge fields. We
shall take coordinates xµ on Minkowski space-time which are either ‘orthonormal’ with
µ = 0, . . . , d−1, or of ‘light-cone’ type with µ = +,−, 1, . . . , d−2, so that the flat metric
has components −g00 = g11 = . . . = gd−1d−1 = g+− = g−+ = 1 and all others vanishing.
(This means that x± = (xd−1 ± x0)/

√
2 agreeing with the conventions of Evans (1993)

but not Evans (1991).) It is useful to set up some conventions regarding indices which will
allow us to deal with temporal and light-cone gauge conditions in a uniform way. Thus
we shall let the single index n on any vector denote either 0 or +, and we shall label the
remaining components by a = 1, . . . , d−1 or a = −, 1, . . . , d−2 respectively. We shall also
find it useful to denote the ‘transverse’ components by i = 1, . . . , d−2. In what follows the
ranges of these indices will always be understood.

4.1 Relativistic particle in an electromagnetic field

A particle of mass m and charge e moving in an arbitrary electromagnetic field Aµ(xν)
can be described by the Lagrangian

L = −
[

m
√

−ẋ2 + eAµ(xν) ẋµ
]

. (11)

Here xµ(t) is the particle’s trajectory, t is a parameter along the worldline, and ẋ = dx/dt.
Introducing the canonical momentum pµ = ∂L/∂ẋµ conjugate to xµ, we have coordinates
(xµ, pµ) on phase space, with Poisson bracket {xµ, pν} = δµ

ν . There is a single, first-class
constraint

φ = (p+ eA)2 +m2 = 0 . (12)

The Hamiltonian is H = λφ, where λ is an arbitrary (time-dependent) function on phase
space.

Consider the class of gauge-fixing conditions of the form

xn = f(pµ, t) , (13)
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where f can be any function of its arguments which defines a good gauge choice (we shall
make no attempt to be more precise concerning this last point). We define a set of physical
variables

(ξA) = (xa∗, pa) where xa∗ = xa −
∫

dpn
∂f

∂pa
(14)

(partial derivatives and integrals of f are to be understood in terms of the functional
dependence given by (13)) and it is clear that in principle the equations (12), (13) and
(14) allow us to express all quantities as functions of (ξA, t). We claim that the system
can then be described by these physical variables together with a Hamiltonian

H∗ = −
∫

dpn
∂f

∂t
, (15)

which is valid for any background gauge field Aµ and any function f .
The explicit restriction to physical phase space is of course very involved for a general

background field. In principle we can substitute from (13) and (14) into (12) to find pn as
a function of the physical variables and time, and substitution of this result back into (13)
and (14) then determines all the xµ as functions of (ξA, t). Fortunately, it is not necessary
to carry out this elimination explicitly in order to verify that our chosen physical variables
do indeed satisfy the criterion (9) leading to the general expression for the Hamiltonian
given above. This is because the explicit time dependence of xµ enters only through pn and
f ; and by using this fact it is easy to calculate from (10) that Y = −d(

∫

dpn ∂f/∂t) mod dt.
Since the original Hamiltonian H vanishes when φ = 0, the result follows.

Examples are:
xn = t giving xa∗ = xa , H∗ = −pn , (16)

which reproduces the temporal and light-cone results of Evans (1993);

x+ = p+t giving x−∗ = x−− p−t , xi∗ = xi , H∗ = −p+p− ;

x0 = p0t giving xa∗ = xa , H∗ = 1

2
p2
0 .

(17)

These expressions are deceptively simple in appearance because they represent very com-
plicated functions of the physical variables in the case of a general background. It is
interesting that the Hamiltonians have universal forms in terms of the original momenta,
in the sense that the dependence on the background field enters only through these par-
ticular functions.

4.2 Relativistic closed string in an antisymmetric tensor field

A closed string moving in an arbitrary background antisymmetric tensor field Bµν(xρ) can
be described by the Lagrangian

L = −
∫ 2π

0

dσ

[

(

(ẋ.x′)
2 − (ẋ)

2
(x′)

2
)1/2

+Bµν(xρ) ẋµx′
ν
]

. (18)

Here xµ(t, σ) describes the string’s trajectory, t and 0 ≤ σ ≤ 2π parametrize the world-
sheet, and ẋ = ∂x/∂t, x′ = ∂x/∂σ. Introducing the momentum pµ(σ) = δL/δẋµ(σ)
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conjugate to xµ(σ) as usual, we have coordinates (xµ(σ), pµ(σ)) on phase space, with
Poisson bracket {xµ(σ), pν(σ′)} = δµ

ν δ(σ−σ′). The only constraints are first-class and are
given by

(pµ +Bµνx
′ν)

2
+ (x′)

2
= 0 , (19)

x′. p = 0 . (20)

Again the Hamiltonian H is proportional to the constraints.
It is useful to introduce the position zero-mode and total momentum of the string by

Xµ(t) =
1

2π

∫ 2π

0

dσ xµ(t, σ) , Pµ(t) =

∫ 2π

0

dσ pµ(t, σ) . (21)

The factor of 2π ensures Xµ and Pµ are conjugate variables. One can then write a decom-
position of the string fields

xµ = Xµ + x̃µ , pµ = 1

2π
Pµ + p̃µ , (22)

where the tilded variables represent the oscillator degrees of freedom.
We consider the class of gauge-fixing conditions of the form

xn = f(Pµ, t) , (23)

pn = 1

2πP
n , (24)

where f is, as before, any function of its arguments which provides a good gauge-fixing
condition. The gauge conditions and constraints allow for the complete elimination of one
pair of string position and momentum variables corresponding to the direction in space-
time labelled by n, and they allow also for the elimination of one additional set of string
oscillators. We introduce a set of physical variables

(ξA) = (Xa∗, Pa, x̃
i(σ), p̃i(σ)) where Xa∗ = Xa −

∫

dPn
∂f

∂Pa
(25)

(comments similar to those following (14) apply) and with a little thought one can see
that the equations (19), (20), (23), (24) indeed allow us in principle to express all the
original variables in terms of (ξA, t). At this stage the analysis looks very like that for
the particle, at least as far as the string zero mode and total momentum variables are
concerned. For the case of a light-cone gauge (n = +) this comparison is accurate: for the
physical variables given above one can again calculate Y from (10) and deduce that (9)
holds, yielding a Hamiltonian

H∗ = −
∫

dPn
∂f

∂t
, (26)

which is valid for any background field Bµν and any gauge-fixing function f . For the case
of a temporal gauge condition (n = 0), however, the physical variables written above do
not satisfy (9) in general, unless the background has some special symmetry. The previous
arguments break down because the solutions for the redundant oscillator variables x̃d−1
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and p̃d−1 in terms of (ξA, t) can depend explicitly on time for a general background field.
This difficulty is absent if, for example, the background vanishes, Bµν = 0, and then the
physical variables and Hamiltonian written above hold for any function f .

Examples are:

xn = t giving Xa∗ = Xa , H∗ = −Pn ; (27)

and
x+ = P+t giving X−∗ = X−− P−t , X i∗ = X i , H∗ = −P+P− ;

x0 = P 0t giving Xa∗ = Xa , H∗ = 1

2
P 2

0 .
(28)

These last examples generalise previous light-cone and temporal gauge-fixing constructions
(Goddard et al 1973, Scherk 1975, Goddard et al 1975).
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