2,155 research outputs found

    Arc Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure

    Get PDF
    The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc seconds. These mirror segments are 0.4mm thick, and 200 to 400mm in size, which makes it hard not to impart distortion at the subarc second level. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced

    Bonding Thin Mirror Segments Without Distortion for the International X-Ray Observatory

    Get PDF
    The International X-Ray Observatory (IXO) uses thin glass optics to maximize large effective area and precise low angular resolution. The thin glass mirror segments must be transferred from their fabricated state to a permanent structure without imparting distortion. IXO will incorporate about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arcseconds. To preserve figure and alignment, the mirror segment must be bonded with sub-micron movement at each corner. Recent advances in technology development have produced significant x-ray test results of a bonded pair of mirrors. Three specific bonding cycles will be described highlighting the improvements in procedure, temperature control, and precision bonding. This paper will highlight the recent advances in alignment and permanent bonding as well as the results they have produced

    Arc-Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure

    Get PDF
    The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it hard to meet the strict angular resolution requirement of 5 arc-seconds for the telescope. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc-second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. Recent advances in the mirror fixture process known as the suspension mount has allowed for a mirror to be mounted to a fixture with minimal distortion. Once on the fixture, mirror segments have been aligned to around 5 arc-seconds which is halfway to the goal of 2.5 arc-seconds per mirror segment. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced

    Arc-Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure

    Get PDF
    The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it hard not to impart distortion at the subare- second level. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc-second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced

    The Spitzer c2d Survey of Nearby Dense Cores. IX. Discovery of a Very Low Luminosity Object Driving a Molecular Outflow in the Dense Core L673-7

    Full text link
    We present new infrared, submillimeter, and millimeter observations of the dense core L673-7 and report the discovery of a low-luminosity, embedded Class 0 protostar driving a molecular outflow. L673-7 is seen in absorption against the mid-infrared background in 5.8, 8, and 24 micron Spitzer images, allowing for a derivation of the column density profile and total enclosed mass of L673-7, independent of dust temperature assumptions. Estimates of the core mass from these absorption profiles range from 0.2-4.5 solar masses. Millimeter continuum emission indicates a mass of about 2 solar masses, both from a direct calculation assuming isothermal dust and from dust radiative transfer models constrained by the millimeter observations. We use dust radiative transfer models to constrain the internal luminosity of L673-7, defined to be the luminosity of the central source and excluding the luminosity from external heating, to be 0.01-0.045 solar luminosities, with 0.04 solar luminosities the most likely value. L673-7 is thus classified as a very low luminosity object (VeLLO), and is among the lowest luminosity VeLLOs yet studied. We calculate the kinematic and dynamic properties of the molecular outflow in the standard manner, and we show that the expected accretion luminosity based on these outflow properties is greater than or equal to 0.36 solar luminosities. The discrepancy between this expected accretion luminosity and the internal luminosity derived from dust radiative transfer models indicates that the current accretion rate is much lower than the average rate over the lifetime of the outflow. Although the protostar embedded within L673-7 is consistent with currently being substellar, it is unlikely to remain as such given the substantial mass reservoir remaining in the core.Comment: 19 pages, 14 figures. Accepted by Ap

    The Spitzer c2d Survey of Nearby Dense Cores. V. Discovery of a VeLLO in the "Starless" Dense Core L328

    Get PDF
    This paper reports the discovery of a Very Low Luminosity Object (VeLLO) in the "starless" dense core L328, using the Spitzer Space Telescope and ground based observations from near-infrared to millimeter wavelengths. The Spitzer 8 micron image indicates that L328 consists of three subcores of which the smallest one may harbor a source, L328-IRS while two other subcores remain starless. L328-IRS is a Class 0 protostar according to its bolometric temperature (44 K) and the high fraction ~72 % of its luminosity emitted at sub-millimeter wavelengths. Its inferred "internal luminosity" (0.04 - 0.06 Lsun) using a radiative transfer model under the most plausible assumption of its distance as 200 pc is much fainter than for a typical protostar, and even fainter than other VeLLOs studied previously. Note, however, that its inferred luminosity may be uncertain by a factor of 2-3 if we consider two extreme values of the distance of L328-IRS (125 or 310 pc). Low angular resolution observations of CO do not show any clear evidence of a molecular outflow activity. But broad line widths toward L328, and Spitzer and near-infrared images showing nebulosity possibly tracing an outflow cavity, strongly suggest the existence of outflow activity. Provided that an envelope of at most ~0.1 Msunis the only mass accretion reservoir for L328-IRS, and the star formation efficiency is close to the canonical value ~30%, L328-IRS has not yet accreted more than 0.05 Msun. At the assumed distance of 200 pc, L328-IRS is destined to be a brown dwarf.Comment: 29 pages, 8 figures, 1 table, to be published in Astrophysical Journa

    Deep Near-Infrared Observations of L1014: Revealing the nature of the core and its embedded source

    Full text link
    Recently, the Spitzer Space Telescope discovered L1014-IRS, a mid-infrared source with protostellar colors, toward the heretofore "starless" core L1014. We present deep near-infrared observations that show a scattered light nebula extending from L1014-IRS. This nebula resembles those typically associated with protostars and young stellar objects, tracing envelope cavities presumably evacuated by an outflow. The northern lobe of the nebula has an opening angle of ~100 degrees, while the southern lobe is barely detected. Its morphology suggests that the bipolar cavity and inferred protostellar disk is not inclined more than 30 degrees from an edge-on orientation. The nebula extends at least 8" from the source at Ks, strongly suggesting that L1014-IRS is embedded within L1014 at a distance of 200 pc rather than in a more distant cloud associated with the Perseus arm at 2.6 kpc. In this case, the apparently low luminosity of L1014-IRS, 0.090 Lsun, is consistent with it having a substellar mass. However, if L1014-IRS is obscured by a circumstellar disk, its luminosity and inferred mass may be greater. Using near-infrared colors of background stars, we investigate characteristics of the L1014 molecular cloud core. We determine a mass of 3.6 Msun for regions of the core with Av > 2 magnitudes. A comparison of the radial extinction profile of L1014 with other cores suggests that L1014 may be among the most centrally condensed cores known, perhaps indicative of the earliest stages of brown dwarf or star formation processes.Comment: Replacement includes revision to mass of core. 22 pages, 6 figures. Accepted by Ap

    The Spitzer c2d Survey of Nearby Dense Cores: III: Low Mass Star Formation in a Small Group, L1251B

    Get PDF
    We present a comprehensive study of a low-mass star-forming region,L1251B, at wavelengths from the near-infrared to the millimeter. L1251B, where only one protostar, IRAS 22376+7455, was known previously, is confirmed to be a small group of protostars based on observations with the Spitzer Space Telescope. The most luminous source of L1251B is located 5" north of the IRAS position. A near-infrared bipolar nebula, which is not associated with the brightest object and is located at the southeast corner of L1251B, has been detected in the IRAC bands. OVRO and SMA interferometric observations indicate that the brightest source and the bipolar nebula source in the IRAC bands are deeply embedded disk sources.Submillimeter continuum observations with single-dish telescopes and the SMA interferometric observations suggest two possible prestellar objects with very high column densities. Outside of the small group, many young stellar object candidates have been detected over a larger region of 12' x 12'. Extended emission to the east of L1251B has been detected at 850 micron; this "east core" may be a site for future star formation since no point source has been detected with IRAC or MIPS. This region is therefore a possible example of low-mass cluster formation, where a small group of pre- and protostellar objects (L1251B) is currently forming, alongside a large starless core (the east core).Comment: 35 pages, 15 figures, accepted for publication in ApJ, for the full resolution paper, visit "http://peggysue.as.utexas.edu/SIRTF/PAPERS/pap27.pub.pdf

    The Veterans Affairs Medical Center's Contribution to Plastic Surgery Education

    Get PDF
    Veterans Affairs (VA) medical centers have played a major role in graduate medical education since the 1940s. Currently, the VA health system operates 168 medical centers across the United States and supports the clinical training of more than 41 200 medical residents annually. Teaching hospitals within the VA provide subspecialty medical and surgical care and perform the majority of complex and high-risk surgical procedures. The diversity of pathologic conditions requiring a plastic surgery skill set are prominent within the VA population: cancer reconstruction, hand surgery, facial fractures, and burn care. Educational opportunities are ample. Plastic surgery residents in university-based training programs typically rotate at the VA hospital for several months each year. This study examines the relationship between the plastic surgery service and resident education within the VA hospitals
    • …
    corecore