11 research outputs found

    The insulin-like growth factor system and its receptors: A potential novel anticancer target

    Get PDF
    The current generation of novel anticancer therapies that are in preclinical and clinical development are based on exploiting our increasing understanding of the molecular and cellular basis of cancer development and progression. Accelerated rates of cell division and proliferation have been postulated to predispose to the development of malignant disease. The insulin-like growth factor (IGF) signaling system has an important physiological role in regulating cellular proliferation and apoptosis. This function has led to considerable interest in its relevance to neoplasia over the last decade. In this review, we give an overview of the IGF system physiology, discuss the epidemiological significance of IGF signaling and neoplasia, and review the preclinical and clinical studies in targeting IGF receptors as cancer therapies

    CSF1R+ Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapies including single-agent immunotherapy and has a dense desmoplastic stroma, and most patients present with advanced metastatic disease. We reveal that macrophages are the dominant leukocyte population both in human PDAC stroma and autochthonous models, with an important functional contribution to the squamous subtype of human PDAC. We targeted macrophages in a genetic PDAC model using AZD7507, a potent selective inhibitor of CSF1R. AZD7507 caused shrinkage of established tumors and increased mouse survival in this difficult-to-treat model. Malignant cell proliferation diminished, with increased cell death and an enhanced T cell immune response. Loss of macrophages rewired other features of the TME, with global changes in gene expression akin to switching PDAC subtypes. These changes were markedly different to those elicited when neutrophils were targeted via CXCR2. These results suggest targeting the myeloid cell axis may be particularly efficacious in PDAC, especially with CSF1R inhibitors

    New approaches in the management of advanced breast cancer – role of combination treatment with liposomal doxorubicin

    No full text
    Iain RJ Macpherson, TR Jeffry EvansBeatson West of Scotland Cancer Centre, Glasgow, United KingdomAbstract: Metastatic breast cancer (MBC) remains a major cause of morbidity and mortality in women worldwide. For three decades doxorubicin, alone or in combination with other cytotoxic agents, has been a mainstay of systemic therapy for MBC. However, its use is limited by cumulative cardiotoxicity. More recently liposomal formulations of doxorubicin have been developed which exhibit equal efficacy but reduced cardiotoxicity in comparison to conventional doxorubicin. The novel toxicity profile of liposomal doxorubicins has prompted their evaluation with various cytotoxic agents in patients with MBC. In addition, their favorable cardiac safety profile has prompted re-evaluation of concomitant therapy with doxorubicin and trastuzumab, a regimen of proven efficacy in MBC but previously considered to be associated with significant cardiotoxicity. We review clinical trial data addressing combination therapy with both pegylated and non-pegylated liposomal doxorubicin in patients with MBC.Keywords: breast cancer, anthracycline, liposome-encapsulated doxorubicin, pegylated liposomal doxorubicin, cardiotoxicit

    Antiproliferative effect of exemestane in lung cancer cells

    No full text
    <p>Abstract</p> <p>Background</p> <p>Recent evidence suggests that estrogen signaling may be involved in the pathogenesis of non-small cell lung cancer (NSCLC). Aromatase is an enzyme complex that catalyses the final step in estrogen synthesis and is present in several tissues, including the lung. In the current study we investigated the activity of the aromatase inhibitor exemestane in human NSCLC cell lines H23 and A549.</p> <p>Results</p> <p>Aromatase expression was detected in both cell lines. H23 cells showed lower protein and mRNA levels of aromatase, compared to A549 cells. Exemestane decreased cell proliferation and increased apoptosis in both cell lines, 48 h after its application, with A549 exhibiting higher sensitivity than H23 cells. Aromatase protein and mRNA levels were not affected by exemestane in A549 cells, whereas an increase in both protein and mRNA levels was observed in H23 cells, 48 h after exemestane application. Moreover, an increase in cAMP levels was found in both cell lines, 15 min after the administration of exemestane. In addition, we studied the effect of exemestane on epidermal growth factor receptor (EGFR) localization and activation. Exemestane increased EGFR activation 15 min after its application in H23 cells. Furthermore, we demonstrated a translocation of EGFR from cell membrane, 24 h after the addition of exemestane in H23 cells. No changes in EGFR activation or localization were observed in A549 cells.</p> <p>Conclusion</p> <p>Our findings suggest an antiproliferative effect of exemestane on NSCLC cell lines. Exemestane may be more effective in cells with higher aromatase levels. Further studies are needed to assess the activity of exemestane in NSCLC.</p

    Antiproliferative effect of exemestane in lung cancer cells

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;: Recent evidence suggests that estrogen signaling may be involved in the pathogenesis of non-small cell lung cancer (NSCLC). Aromatase is an enzyme complex that catalyses the final step in estrogen synthesis and is present in several tissues, including the lung. In the current study we investigated the activity of the aromatase inhibitor exemestane in human NSCLC cell lines H23 and A549. &lt;b&gt;Results&lt;/b&gt;: Aromatase expression was detected in both cell lines. H23 cells showed lower protein and mRNA levels of aromatase, compared to A549 cells. Exemestane decreased cell proliferation and increased apoptosis in both cell lines, 48 h after its application, with A549 exhibiting higher sensitivity than H23 cells. Aromatase protein and mRNA levels were not affected by exemestane in A549 cells, whereas an increase in both protein and mRNA levels was observed in H23 cells, 48 h after exemestane application. Moreover, an increase in cAMP levels was found in both cell lines, 15 min after the administration of exemestane. In addition, we studied the effect of exemestane on epidermal growth factor receptor (EGFR) localization and activation. Exemestane increased EGFR activation 15 min after its application in H23 cells. Furthermore, we demonstrated a translocation of EGFR from cell membrane, 24 h after the addition of exemestane in H23 cells. No changes in EGFR activation or localization were observed in A549 cells. &lt;b&gt;Conclusion&lt;/b&gt;: Our findings suggest an antiproliferative effect of exemestane on NSCLC cell lines. Exemestane may be more effective in cells with higher aromatase levels. Further studies are needed to assess the activity of exemestane in NSCLC

    A phase I study of intravenous and oral rucaparib in combination with chemotherapy in patients with advanced solid tumours

    No full text
    Background: This study evaluated safety, pharmacokinetics, and clinical activity of intravenous and oral rucaparib, a poly (ADP-ribose) polymerase inhibitor, combined with chemotherapy in patients with advanced solid tumours. Methods: Initially, patients received escalating doses of intravenous rucaparib combined with carboplatin, carboplatin/paclitaxel, cisplatin/pemetrexed, or epirubicin/cyclophosphamide. Subsequently, the study was amended to focus on oral rucaparib (once daily, days 1–14) combined with carboplatin (day 1) in 21-day cycles. Doselimiting toxicities (DLTs) were assessed in cycle 1 and safety in all cycles. Results: Eighty-five patients were enrolled (22 breast, 15 ovarian/peritoneal, 48 other primary cancers), with a median of three prior therapies (range, 1–7). Neutropenia (27.1%) and thrombocytopenia (18.8%) were the most common grade ≥3 toxicities across combinations and were DLTs with the oral rucaparib/carboplatin combination. Maximum tolerated dose for the combination was 240 mg per day oral rucaparib and carboplatin area under the curve 5 mg mL–1 min–1. Oral rucaparib demonstrated dose-proportional kinetics, a long half-life (≈17 hours) and good bioavailability (36%). Pharmacokinetics were unchanged by carboplatin coadministration. The rucaparib/carboplatin combination had radiologic antitumour activity, primarily in BRCA1- or BRCA2-mutated breast and ovarian/peritoneal cancers. Conclusions: Oral rucaparib can be safely combined with a clinically relevant dose of carboplatin in patients with advanced solid tumours. (Trial registration ID: NCT01009190)</p

    Loyalty, price seeking and protective consumer legislation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:3597.98088(9910) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    A three-arm randomised Phase II study of the MEK inhibitor selumetinib alone or in combination with paclitaxel in metastatic uveal melanoma

    Get PDF
    AimsThe MAPK pathway is constitutively activated in uveal melanoma (UM). Selumetinib (AZD6244, ARRY-142886), a MEK inhibitor, has shown limited activity as monotherapy in metastatic UM. Pre-clinical studies support synergistic cytotoxic activity for MEK inhibitors combined with taxanes, and here we sought to assess the clinical efficacy of combining selumetinib and paclitaxel.Patients and methodsSeventy-seven patients with metastatic UM who had not received prior chemotherapy were randomised to selumetinib alone, or combined with paclitaxel with or without interruption in selumetinib two days before paclitaxel. The primary endpoint was progression free survival (PFS). After amendment, the combination arms were combined for analysis and the sample size adjusted to detect a hazard ratio (HR): 0.55, 80% power at 1-sided 5% significance level.ResultsThe median PFS in the combination arms was 4.8 months (95% CI: 3.8 - 5.6) compared with 3.4 months (2.0 - 3.9) in the selumetinib arm (HR 0.62 [90% CI 0.41 - 0.92], 1-sided p-value = 0.022). ORR was 14% and 4% in the combination and monotherapy arms respectively. Median OS was 9 months for the combination and was not significantly different from selumetinib alone (10 months) with HR of 0.98 [90% CI 0.58 - 1.66], 1-sided p-value = 0.469. Toxicity was in keeping with the known profiles of the agents involved.ConclusionsSelPac met its primary endpoint, demonstrating an improvement in PFS for combination selumetinib and paclitaxel. No improvement in OS was observed, and the modest improvement in PFS is not practice changing
    corecore