10,649 research outputs found

    Balancing the demands of two tasks: an investigation of cognitive–motor dual-tasking in relapsing remitting multiple sclerosis

    Get PDF
    Background: People with relapsing remitting multiple sclerosis (PwRRMS) suffer disproportionate decrements in gait under dual-task conditions, when walking and a cognitive task are combined. There has been much less investigation of the impact of cognitive demands on balance. Objectives: This study investigated whether: (1) PwRRMS show disproportionate decrements in postural stability under dual-task conditions compared to healthy controls, and (2) dual-task decrements are associated with everyday dual-tasking difficulties. The impact of mood, fatigue, and disease severity on dual-tasking was also examined. Methods: A total of 34 PwRRMS and 34 matched controls completed cognitive (digit span) and balance (movement of center of pressure on Biosway on stable and unstable surfaces) tasks under single- and dual-task conditions. Everyday dual-tasking was measured using the Dual-Tasking Questionnaire. Mood was measured by the Hospital Anxiety & Depression Scale. Fatigue was measured via the Modified Fatigue Index Scale. Results: No differences in age, gender, years of education, estimated pre-morbid IQ, or baseline digit span between groups. Compared with controls, PwRRMS showed significantly greater decrement in postural stability under dual-task conditions on an unstable surface (p=.007), but not a stable surface (p=.679). Balance decrement scores were not correlated with everyday dual-tasking difficulties or fatigue. Stable surface balance decrement scores were significantly associated with levels of anxiety (rho=0.527; p=.001) and depression (rho=0.451; p=.007). Conclusions: RRMS causes dual-tasking difficulties, impacting balance under challenging conditions, which may contribute to increased risk of gait difficulties and falls. The relationship between anxiety/depression and dual-task decrement suggests that emotional factors may be contributing to dual-task difficulties

    Solvent mediated interactions between model colloids and interfaces: A microscopic approach

    Get PDF
    We determine the solvent mediated contribution to the effective potentials for model colloidal or nano- particles dispersed in a binary solvent that exhibits fluid-fluid phase separation. Using a simple density functional theory we calculate the density profiles of both solvent species in the presence of the `colloids', which are treated as external potentials, and determine the solvent mediated (SM) potentials. Specifically, we calculate SM potentials between (i) two colloids, (ii) a colloid and a planar fluid-fluid interface, and (iii) a colloid and a planar wall with an adsorbed wetting film. We consider three different types of colloidal particles: colloid A which prefers the bulk solvent phase rich in species 2, colloid C which prefers the solvent phase rich in species 1, and `neutral' colloid B which has no strong preference for either phase, i.e. the free energies to insert the colloid into either of the coexisting bulk phases are almost equal. When a colloid which has a preference for one of the two solvent phases is inserted into the disfavored phase at statepoints close to coexistence a thick adsorbed `wetting' film of the preferred phase may form around the colloids. The presence of the adsorbed film has a profound influence on the form of the SM potentials.Comment: 17 Pages, 13 Figures. Accepted for publication in Journal of Chemical Physic

    Graphene Nanoribbons Via Crystal Engineering

    Get PDF
    In this issue of Chem, Rubin and coworkers have developed a new approach for the bottom-up synthesis of graphene nanoribbons by efficiently combining crystal engineering and topochemical polymerization

    The van Hove distribution function for Brownian hard spheres: dynamical test particle theory and computer simulations for bulk dynamics

    Get PDF
    We describe a test particle approach based on dynamical density functional theory (DDFT) for studying the correlated time evolution of the particles that constitute a fluid. Our theory provides a means of calculating the van Hove distribution function by treating its self and distinct parts as the two components of a binary fluid mixture, with the `self' component having only one particle, the `distinct' component consisting of all the other particles, and using DDFT to calculate the time evolution of the density profiles for the two components. We apply this approach to a bulk fluid of Brownian hard spheres and compare to results for the van Hove function and the intermediate scattering function from Brownian dynamics computer simulations. We find good agreement at low and intermediate densities using the very simple Ramakrishnan-Yussouff [Phys. Rev. B 19, 2775 (1979)] approximation for the excess free energy functional. Since the DDFT is based on the equilibrium Helmholtz free energy functional, we can probe a free energy landscape that underlies the dynamics. Within the mean-field approximation we find that as the particle density increases, this landscape develops a minimum, while an exact treatment of a model confined situation shows that for an ergodic fluid this landscape should be monotonic. We discuss possible implications for slow, glassy and arrested dynamics at high densities.Comment: Submitted to Journal of Chemical Physic

    Sexual Differentiation of Circadian Clock Function in the Adrenal Gland

    Get PDF
    Sex differences in glucocorticoid production are associated with increased responsiveness of the adrenal gland in females. However, the adrenal-intrinsic mechanisms that establish sexual dimorphic function remain ill defined. Glucocorticoid production is gated at the molecular level by the circadian clock, which may contribute to sexual dimorphic adrenal function. Here we examine sex differences in the adrenal gland using an optical reporter of circadian clock function. Adrenal glands were cultured from male and female Period2::Luciferase (PER2::LUC) mice to assess clock function in vitro in real time. We confirm that there is a pronounced sex difference in the intrinsic capacity to sustain PER2::LUC rhythms in vitro, with higher amplitude rhythms in adrenal glands collected from males than from females. Changes in adrenal PER2::LUC rhythms over the reproductive life span implicate T as an important factor in driving sex differences in adrenal clock function. By directly manipulating hormone levels in adult mice in vivo, we demonstrate that T increases the amplitude of PER2::LUC rhythms in adrenal glands of both male and female mice. In contrast, we find little evidence that ovarian hormones modify adrenal clock function. Lastly, we find that T in vitro can increase the amplitude of PER2::LUC rhythms in male adrenals but not female adrenals, which suggests the existence of sex differences in the mechanisms of T action in vivo. Collectively these results reveal that activational effects of T alter circadian timekeeping in the adrenal gland, which may have implications for sex differences in stress reactivity and stress-related disorders

    3D quantitative imaging of unprocessed live tissue reveals epithelial defense against bacterial adhesion and subsequent traversal requires MyD88.

    Get PDF
    While a plethora of in vivo models exist for studying infectious disease and its resolution, few enable factors involved in the maintenance of health to be studied in situ. This is due in part to a paucity of tools for studying subtleties of bacterial-host interactions at a cellular level within live organs or tissues, requiring investigators to rely on overt outcomes (e.g. pathology) in their research. Here, a suite of imaging technologies were combined to enable 3D and temporal subcellular localization and quantification of bacterial distribution within the murine cornea without the need for tissue processing or dissection. These methods were then used to demonstrate the importance of MyD88, a central adaptor protein for Toll-Like Receptor (TLR) mediated signaling, in protecting a multilayered epithelium against both adhesion and traversal by the opportunistic bacterial pathogen Pseudomonas aeruginosa ex vivo and in vivo

    Dynamics in inhomogeneous liquids and glasses via the test particle limit

    Get PDF
    We show that one may view the self and the distinct part of the van Hove dynamic correlation function of a simple fluid as the one-body density distributions of a binary mixture that evolve in time according to dynamical density functional theory. For a test case of soft core Brownian particles the theory yields results for the van Hove function that agree quantitatively with those of our Brownian dynamics computer simulations. At sufficiently high densities the free energy landscape underlying the dynamics exhibits a barrier as a function of the mean particle displacement, shedding new light on the nature of glass formation. For hard spheres confined between parallel planar walls the barrier height oscillates in-phase with the local density, implying that the mobility is maximal between layers, which should be experimentally observable in confined colloidal dispersions.Comment: 4 pages, 3 figure

    A coupled drug kinetics-cell cycle model to analyse the response of human cells to intervention by topotecan

    Get PDF
    A model describing the response of the growth of single human cells in the absence and presence of the anti-cancer agent topotecan (TPT) is presented. The model includes a novel coupling of both the kinetics of TPT and cell cycle responses to the agent. By linking the models in this way, rather than using separate (disjoint) approaches, it is possible to illustrate how the drug perturbs the cell cycle. The model is compared to experimental in vitro cell cycle response data (comprising single cell descriptors for molecular and behavioural events), showing good qualitative agreement for a range of TPT dose levels

    Evidence for J and H-band excess in classical T Tauri stars and the implications for disk structure and estimated ages

    Full text link
    We argue that classical T Tauri stars (cTTs) possess significant non- photospheric excess in the J and H bands. We first show that normalizing the spectral energy distributions (SEDs) of cTTs to the J-band leads to a poor fit of the optical fluxes, while normalizing the SEDs to the Ic-band produces a better fit to the optical bands and in many cases reveals the presence of a considerable excess at J and H. NIR spectroscopic veiling measurements from the literature support this result. We find that J and H-band excesses correlate well with the K-band excess, and that the J-K and H-K colors of the excess emission are consistent with that of a black body at the dust sublimation temperature (~ 1500-2000 K). We propose that this near-IR excess originates at a hot inner rim, analogous to those suggested to explain the near-IR bump in the SEDs of Herbig Ae/Be stars. To test our hypothesis, we use the model presented by Dullemond et al. (2001) to fit the photometry data between 0.5 um and 24 um of 10 cTTs associated with the Chamaeleon II molecular cloud. The models that best fit the data are those where the inner radius of the disk is larger than expected for a rim in thermal equilibrium with the photospheric radiation field alone. In particular, we find that large inner rims are necessary to account for the mid infrared fluxes (3.6-8.0 um) obtained by the Spitzer Space Telescope. Finally, we argue that deriving the stellar luminosities of cTTs by making bolometric corrections to the J-band fluxes systematically overestimates these luminosities. The overestimated luminosities translate into underestimated ages when the stars are placed in the H-R diagram. Thus, the results presented herein have important implications for the dissipation timescale of inner accretion disks.Comment: 45 pages, 13 figure

    IEA Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    Full text link
    This guide presents insights and guidance from DOE’s gathered through longstanding and extensive participation in IEA implementing agreements (IAs) and annexes. Even though DOE has been a key participant in international research activities through the IEA since the 1970s, the experience, knowledge, and institutional memory associated with these activities can be lost or forgotten easily as key DOE managers retire or leave the department. The guide seeks to assemble in a single reference some of the learning that has occurred through participation in IEA IAs as a guide for BTP managers currently responsible for IAs and for those who might consider entering into new IEA activities in the future
    • …
    corecore