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Sexual Differentiation of Circadian Clock Function in
the Adrenal Gland

Ian Kloehn,* Savin B. Pillai,* Laurel Officer, Claire Klement, Paul J. Gasser,
and Jennifer A. Evans

Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233

Sex differences in glucocorticoid production are associated with increased responsiveness of the
adrenal gland in females. However, the adrenal-intrinsic mechanisms that establish sexual dimor-
phic function remain ill defined. Glucocorticoid production is gated at the molecular level by the
circadian clock, which may contribute to sexual dimorphic adrenal function. Here we examine sex
differences in the adrenal gland using an optical reporter of circadian clock function. Adrenal
glands were cultured from male and female Period2::Luciferase (PER2::LUC) mice to assess clock
function in vitro in real time. We confirm that there is a pronounced sex difference in the intrinsic
capacity to sustain PER2::LUC rhythms in vitro, with higher amplitude rhythms in adrenal glands
collected from males than from females. Changes in adrenal PER2::LUC rhythms over the repro-
ductive life span implicate T as an important factor in driving sex differences in adrenal clock
function. By directly manipulating hormone levels in adult mice in vivo, we demonstrate that T
increases the amplitude of PER2::LUC rhythms in adrenal glands of both male and female mice. In
contrast, we find little evidence that ovarian hormones modify adrenal clock function. Lastly, we
find that T in vitro can increase the amplitude of PER2::LUC rhythms in male adrenals but not female
adrenals, which suggests the existence of sex differences in the mechanisms of T action in vivo.
Collectively these results reveal that activational effects of T alter circadian timekeeping in the
adrenal gland, which may have implications for sex differences in stress reactivity and stress-related
disorders. (Endocrinology 157: 1895–1904, 2016)

Glucocorticoid synthesis and release are regulated by
the circadian system (1), which is a hierarchical col-

lection of biological clocks located throughout the brain
and body (2). At the cellular level, circadian rhythms are
generated by a molecular oscillator involving a family of
clock genes (3). At the core of this molecular oscillator is
a 24-hour negative-feedback loop involving daily changes
in transcription and translation. Briefly, the basic helix
loop helix transcription factors circadian locomotor out-
put cycles kaput (CLOCK) and brain and muscle aryl hy-
drocarbon receptor nuclear translocator-like protein
(BMAL1) stimulate transcription of three Period genes
(Per1, Per2, Per3) and two Cryptochrome genes (Cry1,
Cry2), whose protein products feedback to inhibit their
own transcription once every 24 hours. This core oscilla-

tor controls daily changes in cellular function by regulat-
ing the expression of numerous other clock-controlled
genes in a tissue-specific manner (4). By regulating hor-
mone synthesis and release, the molecular circadian clock
plays an important role in maintaining optimal function in
the face of daily environmental change.

Glucocorticoid production is regulated by the master
clock in the brain and local clocks in downstream tissues
(5). Importantly, the adrenal gland itself contains a circa-
dian clock that is necessary for generating circadian
rhythms in glucocorticoid release (6–10). Furthermore,
the local circadian clock within the adrenal gland regulates
the sensitivity to ACTH and the capacity to synthesize
glucocorticoids. For example, circadian clock proteins
regulate transcription of key mediators of glucocorticoid
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responses, including melanocortin 2 receptor and steroid-
ogenic acute regulatory protein (6, 8, 10, 11). Addition-
ally, ACTH can influence circadian clock proteins and the
adrenal clock displays a daily rhythm in its sensitivity to
ACTH (12–15). Changes in adrenal clock function may
have widespread consequences within the circadian sys-
tem because the daily glucocorticoid rhythm critically reg-
ulates other clock tissues (5). Thus, obtaining a deeper
understanding of the intrinsic function of the adrenal
clock is an important goal.

Although nearly all research on the circadian regulation
of adrenal physiology has been conducted using male an-
imals, glucocorticoid release patterns are known to be sex-
ually diergic (16, 17). For instance, relative to male ro-
dents, female rodents show greater corticosterone release
under basal conditions (18) and in response to stress (19,
20). Although it is clear that sex differences exist in central
components of the hypothalamo-pituitary-adrenal (HPA)
axis (21, 22), there is also evidence that the adrenal gland
itself is sexually differentiated. For example, female ro-
dents display ACTH-induced glucocorticoid responses
that are larger, faster, and persistently elevated relative to
male rodents, even during dexamethasone-induced inhi-
bition of the pituitary gland (23). Moreover, ACTH-stim-
ulated glucocorticoid production in vitro is higher in ad-
renal cultures collected from female rodents relative to
those collected from males (24). In contrast to extensive
knowledge regarding sex differences in higher-order HPA
structures, the cellular and molecular mechanisms under-
lying sex differences in the intrinsic function of the adrenal
gland are not well understood.

An important question that remains unanswered is the
extent to which the circadian clock in the adrenal gland
contributes to sexually distinct patterns of glucocorticoid
release. There is evidence that the function of the adrenal
clock differs between male and female mice (25), but the
basis of this effect has yet to be examined fully. Here we
examine sex differences in adrenal clock function using a
genetically encoded optical reporter of Period 2 (PER2)
protein expression. Using this real-time bioluminescence
assay to track intrinsic circadian clock function within
adrenal glands of male and female mice, we verify that
adrenal explants from male mice sustain higher-amplitude
PER2 rhythms than those from female mice. Interestingly,
we find that this sex difference in adrenal clock function is
influenced by reproductive age, which implicates a role for
gonadal steroids in the sexual differentiation of adrenal
clock function. When examined directly, we find that the
adrenalclock isaffectedbychanges incirculatingsexsteroids
during adulthood, with evidence for strong activational ef-
fects of T in both males and females in vivo. Lastly, in vitro
application of T can directly influence PER2::Luciferase

(PER2::LUC) rhythms in male adrenals but not female ad-
renals, suggesting that there are sex differences in the process
bywhichTaltersadrenalclockfunction invivo.Collectively,
these findings suggest the novel hypothesis that sexual dif-
ferentiation of adrenal clock function may contribute to sex-
ually dimorphic patterns of glucocorticoid release and stress
reactivity.

Materials and Methods

Mice
Homozygous PER2::LUC knock-in mice (26), backcrossed

onto a C57BL/6 background for at least 12 generations, were
bred and raised under a 24-hour light-dark cycle with 12 hours
of light and 12 hours of darkness (lights off at 6:00 PM CST).
Throughout life, ambient temperature was maintained at
22°C � 2°C, and mice had ad libitum access to water and food
(Teklad Rodent Diet number 8604). At weaning, mice were
group housed in cages without running wheels. Mice remained
group housed until tissue collection unless they received a sur-
gical treatment or were older than 20 weeks (to prevent fighting).
All procedures were conducted according to the National Insti-
tutes of Health Guide for the Care and Use of Animals and were
approved by the Institutional Animal Care and Use Committee
at Marquette University.

PER2::LUC tissue culture
PER2::LUC mice were killed with isoflurane anesthesia and

cervical dislocation prior to tissue collection 4–6 hours before
lights-off. Adrenal glands were excised and placed in chilled
Hanks’ balanced salt solution supplemented with HEPES,
NaHCO3, and penicillin-streptomycin. Adrenal glands were
cleaned of adipose tissue and bisected manually with a scalpel
before being cultured on a membrane with 1.2 mL of serum-free,
air-buffered DMEM (Gibco 12100-046) supplemented with
HEPES, NaHCO3, penicillin-streptomycin, and beetle luciferin
(Gold Biotechnologies). Bioluminescence rhythms were mea-
sured for at least 6 days with a luminometer (Actimetrics Inc)
housed inside a light-tight incubator set to 36°C. To test effects
of T in vitro, male and female adrenals were cultured for 9 days
before medium exchange using DMEM with either 2 �M T
(Sigma; catalog number T-1500) or vehicle (100% EtOH). The
final concentration of EtOH in DMEM for both T and vehicle
cultures was less than 0.001%. During dissection, two samples
were extracted from each mouse to test the effects of T using a
within-subjects design. Whether the left or right adrenal sample
was stimulated with T was counterbalanced across mice.

Gonadectomy
To test whether sex differences in adrenal clock function arise

from differences in circulating T during adulthood, gonadec-
tomy (GDX) or sham surgery was performed in male mice 8–11
weeks of age. GDX or sham surgery was performed under iso-
flurane anesthesia, with carprofen gel for pre- and postoperative
analgesia. Testes were removed after laparotomy and clamping
of the testicular artery. Mice with sham castrations underwent
laparotomy, but the testes were left intact. Incisions were closed
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with sterile suture, and nitrofurozone was applied to the incision
site. Mice were singly housed after surgery, and adrenal glands
were collected 4 weeks later for PER2::LUC recording.

Steroid replacement
To further test the role of activational effects of T, male and

female mice were implanted at 8–11 weeks of age with a sc
SILASTIC brand capsule (Dow Corning Corp; outer diameter
2.16 mm, 15 mm in length) that was filled with 10 mm of T, 10
mm of �-estradiol (Sigma; catalog number E-8875) or left empty.
Capsules were sealed with SILASTIC brand adhesive, washed in
70% ethanol, and primed in sterile saline at 36°C overnight to
prevent a bolus of hormone upon implantation. This procedure
has been shown to effectively restore T to physiological levels for
more than 4 weeks (27, 28). Capsules were placed between the
scapulae under isoflurane anesthesia, and the incision was closed
with wound clips before being treated with nitrofurazone. Mice
were singly housed after surgery, and adrenal glands were col-
lected 4 weeks later for PER2::LUC recording.

Estrous cycle determination
To determine whether the function of the adrenal clock varies

with the estrous cycle, vaginal smears were obtained from 22- to
27-week-old female mice immediately prior to adrenal dissec-
tion. Vaginal smears were obtained by injecting and retrieving
100 �L of sterile saline into the vaginal lumen. Each sample was
transferred to a glass microscope slide, dried, and stained using
the Papanicolaou method (29) using hematoxylin, orange G, and
eosin Y). Phase of estrous stage was determined by an observer
blind to the results of PER2::LUC analyses using the following
criteria. Proestrus was identified by the presence of a large pro-
portion of nucleated epithelial cells (�70% of total cells), estrus
by a large proportion of lightly stained enucleated and cornified
cells (�50% of total cells), and diestrus by a large proportion of
leukocytes (�80% of total cells).

PER2::LUC rhythm analyses
PER2::LUC rhythms were analyzed with Lumicycle analysis

software (Actimetrics Inc). First, the PER2::LUC time series was
detrended by subtracting the 24-hour running average from the
raw data. Next, PER2::LUC rhythms were analyzed by fitting a
damped sine wave to the first five cycles in vitro, starting with
the time of the first trough in vitro. Period, damping rate, and the
goodness of fit of the sine wave were then recorded. Finally, the
times of peak and trough PER2::LUC were recorded for each
sample in vitro, and the corresponding values were extracted
from the exported baseline subtracted time series using Excel.
From these parameters, we quantified PER2::LUC amplitude
(difference between peak and trough values) and period length
(difference between two consecutive peak times) for each cycle in
vitro. For each sample, we calculated the average period and the
precision of period (inverse of SD) for the five cycles in vitro.
Statistical analyses were performed with JMP software (SAS In-
stitute). Data are represented in figures and tables as mean �
SEM.

Results

Given the role of the circadian clock in gating glucocor-
ticoid production and the influence of sex on stress reac-

tivity, we examined sex differences in adrenal clock func-
tion using a genetically encoded optical reporter of PER2
clock protein expression (Figure 1A). Adrenals cultured
from 12-week-old PER2::LUC mice displayed a marked
sex difference in the amplitude of PER2 rhythms (Figure
1A, repeated measures ANOVA, P � .0005), consistent
with an earlier report (25). Specifically, adrenal explants
from male mice sustained higher-amplitude PER2 rhy-
thms than those collected from female mice (Figure 1B).
Consequently, male adrenals displayed a slower damping
rate of PER2::LUC rhythms relative to female adrenals
(Table 1). In contrast, period and phase did not differ by
sex (Table 1). To test whether sex differences in rhythm
amplitude were driven by the size of the tissue sample, we
measured the weight of the adrenals after recording. Sam-
ple weight was not significantly correlated with damp-
ing of PER2::LUC rhythms in either females (r2 � 0.26,
P � .1) or males (r2 � 0.24, P � .1), although overall
adrenal weight was larger in females than males (Table
1, t[14] � 5.67, P � .0001), as reported previously (30).
This pattern of results suggests that sexually dimorphic
PER2::LUC rhythms are due to intrinsic differences in
the function of the local circadian clock in the adrenal
gland.

To further examine the sex difference in adrenal clock
function, we analyzed PER2::LUC rhythms from adrenal
glands in male and female mice over the first year of life
(Figure 2, A and B). In prepubescent mice, the sex differ-
ence in PER2::LUC amplitude was attenuated relative to
adult mice but nevertheless detectable at each age exam-
ined. At 3 weeks of age, PER2::LUC amplitude was overall

Figure 1. At 12 weeks of age, adrenal glands collected from male
mice display higher amplitude PER2::LUC rhythms than adrenal glands
collected from female mice. A, Representative PER2::LUC
bioluminescence rhythms from adrenal glands collected from a male
and female mouse before (top panel) and after (bottom panel) baseline
subtraction. B, Adrenal glands collected from adult males displayed
larger amplitude PER2::LUC rhythms on each cycle in culture (repeated
measures ANOVA: sex, F[1,14] � 85.80, P � .0001; time in vitro,
F[4,11] � 106.11, P � .0001; sex � time in vitro, F[4,11] � 9.47, P �
.0005). Number of cultures per group is eight per sex (see Table 2).
*, Male vs female, least squares means contrasts, P � .01.
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higher in males relative to females (Figure 2A, repeated
measures ANOVA, P � .05), but the two sexes did not
differ on any cycle in vitro (Figure 2, A and B). In 4-week-
old mice, the sex difference in PER2::LUC amplitude was
more pronounced than at 3 weeks of age (Figure 2A, re-
peated measures ANOVA, P � .01), with males displaying
higher PER2::LUC amplitude on the second and third cy-
cles in vitro (Figure 2, A and B). This pattern was main-
tained at 5 weeks of age, with a stronger overall statistical
difference than evident at 3 or 4 weeks of age (Figure 2A,
repeated measures ANOVA, P � .005). Similarly, males

displayed higher amplitude rhythms relative to females at
8 weeks of age, which is near puberty in this strain of
mouse (Figure 2A, repeated measures ANOVA, P � .05).
The sex difference remained evident as mice grew older
(Figure 2A), with higher PER2::LUC amplitude in males at
both 26 weeks of age (repeated measures ANOVA, P �
.0001) and 52 weeks of age (repeated measures ANOVA,
P � .0001). Across the reproductive life span, no other
rhythmic parameters systematically differed by sex (Table
1). Overall, the pattern of results indicates that the sex
difference in adrenal clock function develops prior to pu-

berty (Figure 2B). Given that T is
measurable in male mice starting at 4
weeks old (31), these data suggest
that circulating levels of T may reg-
ulate adrenal clock function.

Based on the results of our devel-
opmental time course, we hypothe-
sized that T modulates the intrinsic
capacity of the adrenal gland to sus-
tain high amplitude PER2::LUC
rhythms. To directly test this hypoth-
esis, we performed castration or sham
surgeries in adult male PER2::LUC
mice. In addition, mice were im-
planted with T capsules to assess
the effects of hormone replacement.
Four weeks later, adrenal glands
were collected from each group for
PER2::LUC recording. Manipulating
T levels in adult male mice influenced
the amplitude of PER2::LUC rhythms
displayed by the adrenal gland in vi-
tro (Figure 3A, repeated measures
ANOVA, P � .0001). Specifically,
castration reduced the amplitude of
PER2::LUC rhythms compared with
sham surgical controls on the first
threecycles invitro(Figure3A).More-
over, the amplitude of PER2::LUC

Figure 2. The magnitude of the sex difference in adrenal clock function changes systematically
over the first year of life. A, Sex influenced the amplitude of adrenal PER2::LUC rhythms at each
developmental age (repeated measures ANOVA: 3 wk, sex, F[1,14] � 4.83, P � .05; time in vitro,
F[4,14] � 59.51, P � .0001; sex � time in vitro, F[4,11] � 0.81, P � .54; 4 wk, sex, F[1,18] �
4.42, P � .05; time in vitro, F[4,15] � 20.62, P � .0001; sex � time in vitro, F[4,15] � 5.03, P �
.009; 5 wk, sex, F[1,14] � 28.15, P � .0001; time in vitro, F[4,11] � 31.46, P � .0001; sex �
time in vitro, F[4,11] � 8.43, P � .002; 8 wk, sex, F[1,22] � 11.68, P � .005; time in vitro,
F[4,19] � 17.46, P � .0001; sex � time in vitro, F[4,19] � 3.61, P � .05; 26 wk, sex, F[1,16] �
3.28, P � .08; time in vitro, F[3,13] � 24.01, P � .0001; sex � time in vitro, F[4,13] � 9.03, P �
.0001; 52 wk, sex, F[1,18] � 7.26, P � .02; time in vitro, F[4,15] � 21.59, P � .0001; sex � time
in vitro, F[4,15] � 40.36, P � .0001). B, Mean amplitude (�SEM) of PER2::LUC rhythms from
male and female adrenal glands on the first three cycles in culture. Reproduction of data in
Figures 1 and 2A is designed to highlight age-related changes. Number of cultures per group is
8–12 per sex (see Table 1). *, Male vs female, least squares means contrasts, P � .01.

Table 1. Parameters of Adrenal PER2::LUC Rhythms in Both Sexes Across the Reproductive Life Span

Age, Wk

Weight, g Peak1 Time, h Period, h Damping, d Precision n

Female Male Female Male Female Male Female Male Female Male Female Male

3 0.6 � 0.1 0.6 � 0.1 41.9 � 0.2 41.4 � 0.3 22.5 � 0.1 22.5 � 0.2 1.2 � 0.1 1.4 � 0.1 1.0 � 0.1 1.4 � 0.2 8 8
4 0.6 � 0.1 0.7 � 0.1 41.9 � 0.3 40.3 � 0.3 22.5 � 0.1 22.6 � 0.2 1.4 � 0.1 1.6 � 0.1 1.8 � 0.3 1.4 � 0.3 10 10
5 1.4 � 0.1 1.1 � 0.1* 40.5 � 0.4 39.8 � 0.2 22.7 � 0.2 22.7 � 0.1 1.3 � 0.1 1.3 � 0.1 0.5 � 0.1 1.4 � 0.2* 8 8
8 1.9 � 0.1 1.4 � 0.1* 42.7 � 0.2 42.2 � 0.5 23.0 � 0.1 23.2 � 0.2 1.4 � 0.1 1.6 � 0.1 1.2 � 0.2 1.1 � 0.2 12 12
12 1.6 � 0.1 1.0 � 0.1* 42.2 � 0.2 41.8 � 0.2 22.8 � 0.2 23.1 � 0.5 1.3 � 0.1 1.7 � 0.1* 1.0 � 0.2 1.8 � 0.4 8 8
26 2.4 � 0.2 1.0 � 0.1* 44.3 � 0.3 43.9 � 0.1 21.9 � 0.4 22.6 � 0.2 1.2 � 0.1 2.1 � 0.2* 0.5 � 0.1 1.8 � 0.3* 10 8
52 1.5 � 0.2 1.1 � 0.2 41.6 � 0.3 42.2 � 0.4 23.4 � 0.7 22.8 � 0.1 0.9 � 0.1 2.1 � 0.2* 1.9 � 0.6 0.5 � 0.1* 14 6
Overall 1.4 � 0.1 1.0 � 0.1* 42.1 � 0.2 41.6 � 0.2 22.6 � 0.1 22.8 � 0.1 1.2 � 0.1 1.7 � 0.1* 1.2 � 0.2 1.3 � 0.1 70 60

* Student’s t test (P � .05).

1898 Kloehn et al Sex Differences in Adrenal Clock Endocrinology, May 2016, 157(5):1895–1904

The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 18 July 2016. at 06:50 For personal use only. No other uses without permission. . All rights reserved.



rhythms was restored by replacement of T but not estrogen
(Figure 3A). Collectively, these data indicate that androgens
during adulthood modulate the amplitude of PER2::LUC
rhythms of adrenal glands in male mice.

We next tested whether adrenal clock function in adult
female mice remains sensitive to T in adulthood. Adult fe-
male PER2::LUC mice were implanted with sham or T pel-

lets, and adrenal glands were collected
4 weeks later for PER2::LUC record-
ing. Provision of T to females in vivo
elevated the amplitude of PER2::LUC
rhythms displayed by the adrenal
gland in vitro (Figure 3B, repeated mea-
sures ANOVA, P � .001). PER2::LUC
amplitude was increased signifi-
cantly on the first three cycles in vitro
(Figure 3B). Interestingly, when ef-
fects of hormone manipulation are
compared across sex (Figure 3B),
groups with T displayed similar am-
plitude of PER2::LUC rhythms on
both cycles 2 and 3, regardless of sex.
In contrast, sample weight and other
PER2::LUC rhythmic parameters
were not systematically affected by
hormonal manipulations (Table 2).
These data indicate that the adrenal
clock of females remains sensitive
to activational effects of T during
adulthood, which complement our
results using hormonal manipula-
tions in male mice.

Next we investigated whether
changes in ovarian hormones over the
estrus cycle influence adrenal clock
function in female mice. To determine
the estrous phase, we performed vag-
inal cytology on samples collected
from females during adrenal dissec-
tion (Figure4A).Noestrus-relateddif-
ferences were detected in adrenal
PER2::LUC rhythms (Figure 4B and

Table 3; repeated measures ANOVA, P � .2). Together with
the lack of change produced by estrogen replacement in cas-
trated males, these results suggest that ovarian hormones do
not alter adrenal clock function.

Because androgen receptors are expressed in mouse ad-
renal glands (32, 33), we tested whether T can influence
PER2::LUC rhythms directly in vitro. Adrenals were cul-

Figure 3. T increases amplitude of adrenal PER2::LUC rhythms in adrenal glands of both male
and female mice. A, Manipulating T levels in adult male mice influenced PER2::LUC amplitude
(repeated measures ANOVA: group, F[3,52] � 26.64, P � .0001; time in vitro, F[4,49] � 86.99,
P � .0001; group � time in vitro, F[4,51] � 22.73, P � .0001). GDX�E, GDX � estrogen
replacement; GDX�T, GDX � T replacement; Sham, sham GDX. *, Sham vs GDX (least squares
means contrasts, P � .001; �, GDX vs GDX�T (least squares means contrasts, P � .001). B, In
adult female mice, T increased PER2::LUC amplitude (repeated measures ANOVA: group,
F[1,14] � 41.20, P � .0001; time in vitro, F[4,11] � 64.54, P � .0001; group � time in vitro,
F[4,11] � 11.69, P � .001). Female control, sham hormone pellet; female�T, T pellet, female
control vs female � T. *, Least squares means contrasts (P � .01). C, Mean amplitude (�SEM) of
PER2::LUC rhythms on the first three cycles in culture. Reproduction of data in Figure 3, A and B,
is designed to highlight T-dependent effects in both sexes. Number of cultures is 8–16 per group
(see Table 2). *, Tukey’s honestly significant difference, P � .005.

Table 2. Parameters of Adrenal PER2::LUC Rhythms Across Hormonal Manipulations

Sex Group Weight, g Peak1 Time, d Period, h Damping, d Precision n

Male Sham 1.4 � 0.1a,b,c 43.2 � 0.4a 22.4 � 0.1a 1.6 � 0.1a 1.8 � 0.4a 16
Male GDX-Control 1.2 � 0.1b,c 43.2 � 0.4a 22.4 � 0.2a 1.3 � 0.1a 1.1 � 0.2a,b 16
Male GDX � T 1.1 � 0.1c 43.2 � 0.3a 22.7 � 0.1a 1.5 � 0.1a 1.4 � 0.2a,b 16
Male GDX � E 1.6 � 0.2a,b 43.2 � 0.9a 22.3 � 0.2a 1.2 � 0.3a 0.5 � 0.1b 8
Female Control 1.9 � 0.2a 45.6 � 0.3a 22.9 � 0.3a 1.2 � 0.1a 0.9 � 0.2a,b 8
Female Testosterone 1.2 � 0.1b,c 43.2 � 0.2a 23.0 � 0.2a 1.5 � 0.1a 1.5 � 0.2a,b 8

a,b,c Groups that do not share the same letter differ from one another (Tukey’s HSD, P � .005).
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tured from 9- to 15-week-old male and female PER2::LUC
mice for 9 days before a medium exchange with or without
2 �M T (Figure 5A). As expected, the sex difference in
PER2::LUC amplitude was evident on each of the first
four cycles in vitro (Figure 5B; repeated measures
ANOVA, P � .0001). Also, consistent with previous work
using other types of cells (34), medium exchange reiniti-
ated PER2::LUC rhythms in adrenal glands (Figure
5A). Overall, the amplitude of the restored PER2::LUC
rhythms differed by sex, with higher amplitude in male
adrenals than female adrenals (Figure 5C; repeated
measures ANOVA, P � .0001). Lastly, T influenced
PER2::LUC amplitude in a manner that depended on sex
(Figure 5C, within subject, repeated measures ANOVA,
P � .005). In male adrenals, T increased PER2::LUC am-
plitude of rhythms on the first two cycles following
medium exchange (Figure 5C). In contrast, PER2::LUC

rhythms in female adrenals were not affected by T in vitro
(Figure 5C). Collectively these results confirm the sex dif-
ference in intrinsic function of the adrenal clock and in-
dicate that T can directly influence the adrenal clock in a
sexually diergic manner.

Discussion

The circadian clock is an important molecular mechanism
regulating glucocorticoid release. Here we confirm the
pronounced sex difference in adrenal clock function first
described in an earlier report (25) and extend those find-
ings by charting the developmental time course over which
this sex difference emerges. These results provide sugges-
tive evidence that T plays a role in driving this sex differ-
ence in adrenal clock function. When tested directly, it is
apparent that activational effects of T in vivo markedly
increase the amplitude of the PER2::LUC rhythms dis-
played by the adrenal clock in vitro. In contrast, we find
little evidence for a strong modulatory role of estrogen in
castrated males or naturally cycling females. The conse-
quences of sex differences in intrinsic adrenal clock func-
tion warrant further investigation, given the important
role of the adrenal circadian clock in regulating glucocor-
ticoid release and the role of glucocorticoids in setting the
phase of other tissue clocks in the circadian system (5).
Collectively our results using the PER2::LUC assay reveal
a novel hormone sensitivity in the intrinsic function of the
adrenal clock. Insight into intrinsic clock function is im-
portant, given the role of local circadian mechanisms in
regulating tissue physiology over the course of the day. It
will be of interest to compare these results with adrenal
rhythm in vivo, given that the adrenal clock of males and
females would be expected to receive differential input
from higher-order structures that are also sexually dimor-
phic (21, 22). Additional work exploring adrenal rhythms
in both males and females may shed new light on the basis
of sex differences in stress responses and stress-related
illnesses.

We demonstrate here that the adrenal clock is markedly
sensitive to activational effects of T. Androgen-induced
changes in adrenal clock function are consistent with the
ability of T to masculinize physiological and behavioral

Figure 4. Estrus does not influence amplitude of adrenal PER2::LUC
rhythms in female mice. A, Representative images of vaginal cytology
during diestrus, proestrus, and estrus. Note that no samples were
obtained from metaestrus. B, PER2::LUC amplitude did not fluctuate
over the estrous cycle (repeated measures ANOVA: group, F[2,31] �
1.23, P � .3; time in vitro, F[4,28] � 55.26, P � .0001; group � time
in vitro, F[4,29] � 1.55, P � .2). Number of cultures is 10–14 per
group (see Table 3).

Table 3. Parameters of Adrenal PER2::LUC Rhythms Across the Estrous Cycle

Group Weight, g Peak1 Time, d Period, h Damping, d Precision n

Diestrus 1.7 � 0.1a 43.2 � 0.5a 24.4 � 1.1a 0.8 � 0.1a 0.3 � 0.1a 10
Proestrus 2.1 � 0.2a 43.2 � 0.4a 22.6 � 0.5a 1.1 � 0.2a 0.4 � 0.1a 10
Estrus 2.0 � 0.2a 43.2 � 0.3a 23.4 � 0.5a 1.0 � 0.1a 0.5 � 0.1a 14

a Groups that do not share the same letter differ from one another (Tukey’s HSD, P � .02).
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stress responses in male (35) and female rodents (36).
Given that estrogen failed to mimic the restorative effects
of T in castrated male mice, this effect is likely mediated by
androgen receptor signaling. Further evidence for activa-
tional effects of T were provided by the developmental
maturation of the sex difference in adrenal clock function,
although organizational effects of gonadal hormones may

be involved as well. The finding that the decline in the
magnitude of the sex difference precedes the age-related
decline in T production (37) indicates that factors other
than levels of circulating T may also influence adrenal
clock function (37, 38). The persistence of the sex differ-
ence in adrenal clock function in vitro suggests that T
alters the intrinsic function of the adrenal clock itself. An-
drogen receptors are located in many areas of the brain
and body, including the hypothalamus, pituitary, and ad-
renal (21). For the most part, previous work exploring the
effects of gonadal hormones on glucocorticoid release has
used in vivo manipulations and in vivo measurements of
HPA function, so it has been difficult to localize the epi-
center of these effects. We find that T in vitro is able to
increase the amplitude of PER2::LUC rhythms restored by
medium exchange. This demonstrates that T can influence
the adrenal gland directly to modulate circadian clock
function. However, in contrast to the effect observed after
a 4-week treatment in vivo, the effect of T in vitro was
smaller in magnitude, shorter lived, and sexually dimor-
phic. The discrepancy between effects of T in vivo and in
vitro results may reflect that longer-term treatment is re-
quired for the full effect to manifest. It is also possible that
T in vivo potently influences adrenal PER2::LUC rhythms
due to effects on higher-order structures that provide input
to the adrenal gland. Given the sexually diergic response
to T in vitro but not in vivo, this suggests that there is a sex
difference in androgen sensitivity and/or site of action.
Future studies using tissue-specific manipulations of an-
drogen receptor signaling may prove useful for investigat-
ing the nature of this sex difference further.

Here we have interrogated adrenal clock function with
hemisected tissue samples, which contain both the cortical
and medullary compartments. Both the adrenal cortex and
medulla display daily rhythms in circadian clock gene ex-
pression, although compartmental differences have been
reported in male mice and rats (39–41). This previous
work suggests that Per2 expression is higher in the cortex
than in the medulla, which would suggest that most of the
PER2::LUC signal detected here derives from the cortex,
at least in the male mice. Although it remains unclear
whether this likewise applies to female rodents, it is known
that adrenal glands from females are larger due to a greater
number and/or volume of adrenocortical cells (30, 42, 43).
Consistent with these previous studies, we find that adre-
nals are larger in female mice at 5 weeks of age and older.
Because we detected the sex difference in adrenal clock
function at 3–4 weeks of age, this suggests that sexual
differentiation of adrenal clock function precedes the on-
set of sex differences in adrenal morphology and gluco-
corticoid release. Although we find little evidence that sex-
ual differentiation of the adrenal clock is due to differences

Figure 5. T exposure in vitro can influence adrenal clock function.
A, Representative PER2::LUC bioluminescence rhythms from adrenal
glands collected from female and male mice for 9 days and then
exposed to a medium exchange with either T or vehicle. The arrow
indicates the day of medium exchange with or without T. The
boxed portion of the upper graph after the medium exchange is
represented in the right graph for each sex. B, Adrenal amplitude
on the first five cycles in vitro differed by sex (repeated measures
ANOVA: sex, F[1,38] � 104.63, P � .0001; time in vitro, F[4,35] �
140.39, P � .0001; sex � time in vitro, F[4,35] � 29.57, P �
.0001). Number of cultures is 16 –22 per sex. C, T potentiated
PER2::LUC amplitude in a sex-dependent manner (within subjects,
repeated measures ANOVA: sex, F[1,68] � 47.74, P � .0001;
medium, F[1,68] � 0.05, P � .82; time in vitro, F[4,68] � 116.15,
P � .0001; sex � time in vitro, F[4,68] � 23.83, P � .0001; sex �
medium, F[1,68] � 3.40, P � .08; medium � time in vitro,
F[4,68] � 3.56, P � .05; sex � medium � time in vitro, F[4,68] �
5.14, P � .005). When divided by sex, T potentiated PER2::LUC
amplitude in male adrenals but not female adrenals (within
subjects, repeated measures ANOVA: males, medium, F[1,28] �
11.32, P � .05; time in vitro, F[4,28] � 120.78, P � .0001;
medium � time in vitro, F[4,28] � 13.58, P � .0001; females,
medium, F[1,40] � 1,.57, P � .24; time in vitro, F[4,40] � 19.26,
P � .0001; medium � time in vitro, F[4,40] � 0.13, P � .97).
*, Male T differs from male vehicle, P � .05. V, vehicle. Number of
cultures is 8 –11 per group.
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in sample mass, it will be of interest to explore how this
relates to sex differences in adrenal morphology (30,
44–47).

In addition, our results indicate that the function of the
adrenal clock is not sensitive to ovarian hormones. First,
across the reproductive life span, we found little evidence
for changes in the adrenal rhythms of females but pro-
nounced changes in males. Furthermore, estrogen was
unable to restore the amplitude of adrenal PER2::
LUC rhythms in castrated male mice. Lastly, adrenal
PER2::LUC rhythms were not influenced by the estrous
phase in naturally cycling female mice. The lack of an
influence of estrogen was unexpected, given previous
work in rats suggesting that estrogen alters basal and
stress-induced corticosterone levels (18, 35, 36, 48–50).
Furthermore, glucocorticoid production in cultured adre-
nocortical cells is enhanced by estrogen (24, 51–53).
Because the vast majority of this previous work was
conducted in rats, it remains unclear whether estrogen
directly influences adrenal function in mice (22, 54, 55).
Notably, interactions between ovarian hormones and
circadian processes have been described in a variety of
rodent species (56).

An important remaining question is whether the sex
difference in adrenal clock function is related directly to
sexual diergism in stress responses. The sex difference in
adrenal clock function may prove influential, given that
the adrenal clock regulates cholesterol transport, steroid-
genesis, and ACTH responses (6, 14, 40) and inhibits glu-
cocorticoid release (10). Based on this work, it is possible
that lower amplitude clock protein expression in females
may result in a perpetually derepressed state that contrib-
utes to their greater capacity to mount a glucocorticoid
response (21, 22). This hypothesis may be tested by as-
sessing molecular rhythms in both sexes. Circadian
rhythms in molecular components of the glucocorticoid
synthesis pathway have been assessed in males but not
females despite the long-standing knowledge that intrinsic
glucocorticoid release in vitro is sexually dimorphic (24).
Future work could address this gap by assessing adrenal
molecular rhythms in both sexes using in vivo and in vitro
assays. On the other hand, it is possible that there is an
opposite relationship, with high glucocorticoid release
damping adrenal clock function. Higher glucocorticoid
release in the female adrenal may act to suppress clock
function, given there is a glucocorticoid response element
within the Per2 promoter (57).

Some insight into this question may be provided by our
developmental time course. Previous work indicates that
the sex difference in corticosterone levels appears in mice
after 5 weeks of age (30), which is an age at which we
detect a fairly robust sex difference in adrenal clock func-

tion. Nevertheless, there is also a suggestion that gluco-
corticoids may influence adrenal clock function. In par-
ticular, PER2::LUC amplitude on the first cycle in vitro
was higher in 12-week-old males (Figures 1B and 5B) than
in 12-week-old Sham males, and 26- or 52-week-old males
(Figure 2). Although it is difficult to speculate on the cause
of this difference, it may be that PER2::LUC amplitude is
influenced by the stress of surgery, single housing, and/or
aging. Future work exploring the relationship between
adrenal clock function, glucocorticoid production, and
stress is warranted.

Clock-regulated glucocorticoid release may have a pro-
found influence on a wide range of biological process by
acting on a variety of targets. The role of the clock in
regulating daily release of glucocorticoids is well estab-
lished and represents the proactive marshaling of energy
during the active phase. In addition, the glucocorticoid
rhythm produced by the adrenal gland is important for
transducing suprachiasmatic nucleus output and drives
molecular rhythms in a variety of peripheral and central
targets, such as the liver, muscle, adipocytes, and the lim-
bic forebrain. Lastly, the circadian clock can buffer the
effects of glucocorticoids by limiting the induction of glu-
cocorticoid-responsive genetic programs (10, 58). Within
this context, pronounced sex differences in clock function
may have important implications for both circadian and
noncircadian processes, including stress-related mental
health disorders.
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