2,744 research outputs found
Birds and people in Europe
At a regional scale, species richness and human population size are frequently positively correlated across space. Such patterns may arise because both species richness and human density increase with energy availability. If the species-energy relationship is generated through the 'more individuals' hypothesis, then the prediction is that areas with high human densities will also support greater numbers of individuals from other taxa. We use the unique data available for the breeding birds in Europe to test this prediction.
Overall regional densities of bird species are higher in areas with more people; species of conservation concern exhibit the same pattern. Avian density also increases faster with human density than does avian biomass, indicating that areas with a higher human density have a higher proportion of small-bodied individuals. The analyses also underline the low numbers of breeding birds in Europe relative to humans, with a median of just three individual birds per person, and 4 g of bird for every kilogram of human
Relative contribution of abundant and rare species to species–energy relationships
A major goal of ecology is to understand spatial variation in species richness. The latter is markedly influenced by energy availability and appears to be influenced more by common species than rare ones; species–energy relationships should thus be stronger for common species. Species–energy relationships may arise because high-energy areas support more individuals, and these larger populations may buffer species from extinction. As extinction risk is a negative decelerating function of population size, this more-individuals hypothesis (MIH) predicts that rare species should respond more strongly to energy. We investigate these opposing predictions using British breeding bird data and find that, contrary to the MIH, common species contribute more to species–energy relationships than rare ones
Polysaccharide-Degrading Complex Produced in Wood and in Liquid Media by the Brown-Rot Fungus Poria Placenta
The polysaccharide-degrading enzymes produced by Poria placenta in decayed wood and liquid media were compared qualitatively and quantitatively. A single carbohydrate-degrading complex was isolated and purified from wood and liquid cultures that was active on both polysaccharides and glycosides. Quantitative differences in enzyme activities from decayed wood versus liquid media were observed. However, the purified extracellular carbohydrate-degrading complex isolated from decayed wood and from liquid cultures must be structurally similar because of similar isoelectric points, electrophoretic properties, and molecular sieving properties
A survey of diffuse interstellar bands in the Andromeda galaxy: optical spectroscopy of M31 OB stars
We present the largest sample to-date of intermediate-resolution blue-to-red
optical spectra of B-type supergiants in M31 and undertake the first survey of
diffuse interstellar bands (DIBs) in this galaxy. Spectral classifications,
radial velocities and interstellar reddenings are presented for 34 stars in
three regions of M31. Radial velocities and equivalent widths are given for the
5780 and 6283 DIBs towards 11 stars. Equivalent widths are also presented for
the following DIBs detected in three sightlines in M31: 4428, 5705, 5780, 5797,
6203, 6269, 6283, 6379, 6613, 6660, and 6993. All of these M31 DIB carriers
reside in clouds at radial velocities matching those of interstellar Na I
and/or H I. The relationships between DIB equivalent widths and reddening
(E(B-V)) are consistent with those observed in the local ISM of the Milky Way.
Many of the observed sightlines show DIB strengths (per unit reddening) which
lie at the upper end of the range of Galactic values. DIB strengths per unit
reddening are found (with 68% confidence), to correlate with the interstellar
UV radiation field strength. The strongest DIBs are observed where the
interstellar UV flux is lowest. The mean Spitzer 8/24 micron emission ratio in
our three fields is slightly lower than that measured in the Milky Way, but we
identify no correlation between this ratio and the DIB strengths in M31.
Interstellar oxygen abundances derived from the spectra of three M31 H II
regions in one of the fields indicate that the average metallicity of the ISM
in that region is 12 + log[O/H] = 8.54 +- 0.18, which is approximately equal to
the value in the solar neighbourhood
Configurational temperature control for atomic and molecular systems
A new configurational temperature thermostat suitable for molecules with holonomic constraints is derived. This thermostat has a simple set of motion equations, can generate the canonical ensemble in both position and momentum space, acts homogeneously through the spatial
coordinates, and does not intrinsically violate the constraints. Our new configurational thermostat is
closely related to the kinetic temperature Nosé-Hoover thermostat with feedback coupled to the position variables via a term proportional to the net molecular force. We validate the thermostat by comparing equilibrium static and dynamic quantities for a fluid of n-decane molecules under
configurational and kinetic temperature control. Practical aspects concerning the implementation of the new thermostat in a molecular dynamics code and the potential applications are discussed
Noninfectious retrovirus particles drive the APOBEC3/Rfv3 dependent neutralizing antibody response.
Members of the APOBEC3 family of deoxycytidine deaminases counteract a broad range of retroviruses in vitro through an indirect mechanism that requires virion incorporation and inhibition of reverse transcription and/or hypermutation of minus strand transcripts in the next target cell. The selective advantage to the host of this indirect restriction mechanism remains unclear, but valuable insights may be gained by studying APOBEC3 function in vivo. Apobec3 was previously shown to encode Rfv3, a classical resistance gene that controls the recovery of mice from pathogenic Friend retrovirus (FV) infection by promoting a more potent neutralizing antibody (NAb) response. The underlying mechanism does not involve a direct effect of Apobec3 on B cell function. Here we show that while Apobec3 decreased titers of infectious virus during acute FV infection, plasma viral RNA loads were maintained, indicating substantial release of noninfectious particles in vivo. The lack of plasma virion infectivity was associated with a significant post-entry block during early reverse transcription rather than G-to-A hypermutation. The Apobec3-dependent NAb response correlated with IgG binding titers against native, but not detergent-lysed virions. These findings indicate that innate Apobec3 restriction promotes NAb responses by maintaining high concentrations of virions with native B cell epitopes, but in the context of low virion infectivity. Finally, Apobec3 restriction was found to be saturable in vivo, since increasing FV inoculum doses resulted in decreased Apobec3 inhibition. By analogy, maximizing the release of noninfectious particles by modulating APOBEC3 expression may improve humoral immunity against pathogenic human retroviral infections
The Spitzer c2d survey of large, nearby, interstellar clouds. X. The Chamaeleon II pre-main-sequence population as observed with IRAC and MIPS
We discuss the results from the combined IRAC and MIPS c2d Spitzer Legacy survey observations and complementary optical and NIR data of the Chamaeleon II (Cha II) dark cloud. We perform a census of the young population in an area of similar to 1.75 deg^(2) and study the spatial distribution and properties of the cloud members and candidate pre-main-sequence (PMS) objects and their circumstellar matter. Our census is complete down to the substellar regime (M approximate to 0.03 M☉). From the analysis of the volume density of the PMS objects and candidates we find two groups of objects with volume densities higher than 25 M☉ pc^(-3) and 5-10 members each. A multiplicity fraction of about 13% +/- 3% is observed for objects with separations 0.8" < θ < 6.0" (142-1065 AU). No evidence for variability between the two epochs of the c2d IRAC data set, Δt ~ 6 hr, is detected. We estimate a star formation efficiency of 1%-4%, consistent with the estimates for Taurus and Lupus, but lower than for Cha I. This might mean that different star formation activities in the Chamaeleon clouds reflect a different history of star formation. We also find that Cha II is turning some 6-7 M☉ into stars every Myr, which is low in comparison with the star formation rate in other c2d clouds. The disk fraction of 70%-80% that we estimate in Cha II is much higher than in other star-forming regions and indicates that the population in this cloud is dominated by objects with active accretion. Finally, the Cha II outflows are discussed; a new Herbig-Haro outflow, HH 939, driven by the classical T Tauri star Sz 50, has been discovered
On-stack replacement, distilled
On-stack replacement (OSR) is essential technology for adaptive optimization, allowing changes to code actively executing in a managed runtime. The engineering aspects of OSR are well-known among VM architects, with several implementations available to date. However, OSR is yet to be explored as a general means to transfer execution between related program versions, which can pave the road to unprecedented applications that stretch beyond VMs. We aim at filling this gap with a constructive and provably correct OSR framework, allowing a class of general-purpose transformation functions to yield a special-purpose replacement. We describe and evaluate an implementation of our technique in LLVM. As a novel application of OSR, we present a feasibility study on debugging of optimized code, showing how our techniques can be used to fix variables holding incorrect values at breakpoints due to optimizations
- …