6 research outputs found

    Unraveling innovation potential in the real-world setting: eighteen novel agents with twenty-six approved European indications, in the management of leukemias, lymphomas, and multiple myeloma

    No full text
    Introduction: Real-world effectiveness of hemato-oncology pharmaceuticals may not necessarily mimic clinical trial efficacy results, mainly due to demographic and clinical practice variability. The aim of this review was to systematically assess the availability of real-world evidence (RWE) and the transferability of clinical trial (CT) efficacy results to real life, for novel agents recently approved to manage lymphomas, leukemias, and multiple myeloma. This is the largest cross-indication review comparing RWE to CT results, aspiring to inform clinical practice and decision-making when funding hemato-oncology pharmaceuticals. Areas covered: The review methodology focused on identifying all novel agents that entered EU landscape between 2012 and 2016 by using European Medicines Agency (EMA) database, while conducting a systematic PubMed literature review of RWE in the specific hematological malignancies, in order to compare RWE versus CT efficacy endpoints. Expert opinion: In total, 18 international nonproprietary names (INNs) that received EMA approval for any indication were included and the registrational efficacy results are presented. Eight (44%) INNs proved to have relevant RWE generated in at least one approved indication. The analysis of findings revealed high variability in terms of RWE availability and transferability of CT results to relevant real-life experience among the disease areas investigated.</p

    Data_Sheet_2_Sentiment analysis of epidemiological surveillance reports on COVID-19 in Greece using machine learning models.pdf

    No full text
    The present research deals with sentiment analysis performed with Microsoft Azure Machine Learning Studio to classify Facebook posts on the Greek National Public Health Organization (EODY) from November 2021 to January 2022 during the pandemic. Positive, negative and neutral sentiments were included after processing 300 reviews. This approach involved analyzing the words appearing in the comments and exploring the sentiments related to daily surveillance reports of COVID-19 published on the EODY Facebook page. Moreover, machine learning algorithms were implemented to predict the classification of sentiments. This research assesses the efficiency of a few popular machine learning models, which is one of the initial efforts in Greece in this domain. People have negative sentiments toward COVID surveillance reports. Words with the highest frequency of occurrence include government, vaccinated people, unvaccinated, telephone communication, health measures, virus, COVID-19 rapid/molecular tests, and of course, COVID-19. The experimental results disclose additionally that two classifiers, namely two class Neural Network and two class Bayes Point Machine, achieved high sentiment analysis accuracy and F1 score, particularly 87% and over 35%. A significant limitation of this study may be the need for more comparison with other research attempts that identified the sentiments of the EODY surveillance reports of COVID in Greece. Machine learning models can provide critical information combating public health hazards and enrich communication strategies and proactive actions in public health issues and opinion management during the COVID-19 pandemic.</p

    Data_Sheet_3_Sentiment analysis of epidemiological surveillance reports on COVID-19 in Greece using machine learning models.pdf

    No full text
    The present research deals with sentiment analysis performed with Microsoft Azure Machine Learning Studio to classify Facebook posts on the Greek National Public Health Organization (EODY) from November 2021 to January 2022 during the pandemic. Positive, negative and neutral sentiments were included after processing 300 reviews. This approach involved analyzing the words appearing in the comments and exploring the sentiments related to daily surveillance reports of COVID-19 published on the EODY Facebook page. Moreover, machine learning algorithms were implemented to predict the classification of sentiments. This research assesses the efficiency of a few popular machine learning models, which is one of the initial efforts in Greece in this domain. People have negative sentiments toward COVID surveillance reports. Words with the highest frequency of occurrence include government, vaccinated people, unvaccinated, telephone communication, health measures, virus, COVID-19 rapid/molecular tests, and of course, COVID-19. The experimental results disclose additionally that two classifiers, namely two class Neural Network and two class Bayes Point Machine, achieved high sentiment analysis accuracy and F1 score, particularly 87% and over 35%. A significant limitation of this study may be the need for more comparison with other research attempts that identified the sentiments of the EODY surveillance reports of COVID in Greece. Machine learning models can provide critical information combating public health hazards and enrich communication strategies and proactive actions in public health issues and opinion management during the COVID-19 pandemic.</p

    Data_Sheet_1_Sentiment analysis of epidemiological surveillance reports on COVID-19 in Greece using machine learning models.pdf

    No full text
    The present research deals with sentiment analysis performed with Microsoft Azure Machine Learning Studio to classify Facebook posts on the Greek National Public Health Organization (EODY) from November 2021 to January 2022 during the pandemic. Positive, negative and neutral sentiments were included after processing 300 reviews. This approach involved analyzing the words appearing in the comments and exploring the sentiments related to daily surveillance reports of COVID-19 published on the EODY Facebook page. Moreover, machine learning algorithms were implemented to predict the classification of sentiments. This research assesses the efficiency of a few popular machine learning models, which is one of the initial efforts in Greece in this domain. People have negative sentiments toward COVID surveillance reports. Words with the highest frequency of occurrence include government, vaccinated people, unvaccinated, telephone communication, health measures, virus, COVID-19 rapid/molecular tests, and of course, COVID-19. The experimental results disclose additionally that two classifiers, namely two class Neural Network and two class Bayes Point Machine, achieved high sentiment analysis accuracy and F1 score, particularly 87% and over 35%. A significant limitation of this study may be the need for more comparison with other research attempts that identified the sentiments of the EODY surveillance reports of COVID in Greece. Machine learning models can provide critical information combating public health hazards and enrich communication strategies and proactive actions in public health issues and opinion management during the COVID-19 pandemic.</p

    Changing life expectancy in European countries 1990–2021: a subanalysis of causes and risk factors from the Global Burden of Disease Study 2021

    No full text
    Background: Decades of steady improvements in life expectancy in Europe slowed down from around 2011, well before the COVID-19 pandemic, for reasons which remain disputed. We aimed to assess how changes in risk factors and cause-specific death rates in different European countries related to changes in life expectancy in those countries before and during the COVID-19 pandemic. Methods: We used data and methods from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 to compare changes in life expectancy at birth, causes of death, and population exposure to risk factors in 16 European Economic Area countries (Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, and Sweden) and the four UK nations (England, Northern Ireland, Scotland, and Wales) for three time periods: 1990–2011, 2011–19, and 2019–21. Changes in life expectancy and causes of death were estimated with an established life expectancy cause-specific decomposition method, and compared with summary exposure values of risk factors for the major causes of death influencing life expectancy. Findings: All countries showed mean annual improvements in life expectancy in both 1990–2011 (overall mean 0·23 years [95% uncertainty interval [UI] 0·23 to 0·24]) and 2011–19 (overall mean 0·15 years [0·13 to 0·16]). The rate of improvement was lower in 2011–19 than in 1990–2011 in all countries except for Norway, where the mean annual increase in life expectancy rose from 0·21 years (95% UI 0·20 to 0·22) in 1990–2011 to 0·23 years (0·21 to 0·26) in 2011–19 (difference of 0·03 years). In other countries, the difference in mean annual improvement between these periods ranged from –0·01 years in Iceland (0·19 years [95% UI 0·16 to 0·21] vs 0·18 years [0·09 to 0·26]), to –0·18 years in England (0·25 years [0·24 to 0·25] vs 0·07 years [0·06 to 0·08]). In 2019–21, there was an overall decrease in mean annual life expectancy across all countries (overall mean –0·18 years [95% UI –0·22 to –0·13]), with all countries having an absolute fall in life expectancy except for Ireland, Iceland, Sweden, Norway, and Denmark, which showed marginal improvement in life expectancy, and Belgium, which showed no change in life expectancy. Across countries, the causes of death responsible for the largest improvements in life expectancy from 1990 to 2011 were cardiovascular diseases and neoplasms. Deaths from cardiovascular diseases were the primary driver of reductions in life expectancy improvements during 2011–19, and deaths from respiratory infections and other COVID-19 pandemic-related outcomes were responsible for the decreases in life expectancy during 2019–21. Deaths from cardiovascular diseases and neoplasms in 2019 were attributable to high systolic blood pressure, dietary risks, tobacco smoke, high LDL cholesterol, high BMI, occupational risks, high alcohol use, and other risks including low physical activity. Exposure to these major risk factors differed by country, with trends of increasing exposure to high BMI and decreasing exposure to tobacco smoke observed in all countries during 1990–2021. Interpretation: The countries that best maintained improvements in life expectancy after 2011 (Norway, Iceland, Belgium, Denmark, and Sweden) did so through better maintenance of reductions in mortality from cardiovascular diseases and neoplasms, underpinned by decreased exposures to major risks, possibly mitigated by government policies. The continued improvements in life expectancy in five countries during 2019–21 indicate that these countries were better prepared to withstand the COVID-19 pandemic. By contrast, countries with the greatest slowdown in life expectancy improvements after 2011 went on to have some of the largest decreases in life expectancy in 2019–21. These findings suggest that government policies that improve population health also build resilience to future shocks. Such policies include reducing population exposure to major upstream risks for cardiovascular diseases and neoplasms, such as harmful diets and low physical activity, tackling the commercial determinants of poor health, and ensuring access to affordable health services. Funding: Gates Foundation.</p

    Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019

    No full text
    Background: Sustainable Development Goal 3.2 has targeted elimination of preventable child mortality, reduction of neonatal death to less than 12 per 1000 livebirths, and reduction of death of children younger than 5 years to less than 25 per 1000 livebirths, for each country by 2030. To understand current rates, recent trends, and potential trajectories of child mortality for the next decade, we present the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 findings for all-cause mortality and cause-specific mortality in children younger than 5 years of age, with multiple scenarios for child mortality in 2030 that include the consideration of potential effects of COVID-19, and a novel framework for quantifying optimal child survival. Methods: We completed all-cause mortality and cause-specific mortality analyses from 204 countries and territories for detailed age groups separately, with aggregated mortality probabilities per 1000 livebirths computed for neonatal mortality rate (NMR) and under-5 mortality rate (U5MR). Scenarios for 2030 represent different potential trajectories, notably including potential effects of the COVID-19 pandemic and the potential impact of improvements preferentially targeting neonatal survival. Optimal child survival metrics were developed by age, sex, and cause of death across all GBD location-years. The first metric is a global optimum and is based on the lowest observed mortality, and the second is a survival potential frontier that is based on stochastic frontier analysis of observed mortality and Healthcare Access and Quality Index. Findings: Global U5MR decreased from 71·2 deaths per 1000 livebirths (95% uncertainty interval [UI] 68·3–74·0) in 2000 to 37·1 (33·2–41·7) in 2019 while global NMR correspondingly declined more slowly from 28·0 deaths per 1000 live births (26·8–29·5) in 2000 to 17·9 (16·3–19·8) in 2019. In 2019, 136 (67%) of 204 countries had a U5MR at or below the SDG 3.2 threshold and 133 (65%) had an NMR at or below the SDG 3.2 threshold, and the reference scenario suggests that by 2030, 154 (75%) of all countries could meet the U5MR targets, and 139 (68%) could meet the NMR targets. Deaths of children younger than 5 years totalled 9·65 million (95% UI 9·05–10·30) in 2000 and 5·05 million (4·27–6·02) in 2019, with the neonatal fraction of these deaths increasing from 39% (3·76 million [95% UI 3·53–4·02]) in 2000 to 48% (2·42 million; 2·06–2·86) in 2019. NMR and U5MR were generally higher in males than in females, although there was no statistically significant difference at the global level. Neonatal disorders remained the leading cause of death in children younger than 5 years in 2019, followed by lower respiratory infections, diarrhoeal diseases, congenital birth defects, and malaria. The global optimum analysis suggests NMR could be reduced to as low as 0·80 (95% UI 0·71–0·86) deaths per 1000 livebirths and U5MR to 1·44 (95% UI 1·27–1·58) deaths per 1000 livebirths, and in 2019, there were as many as 1·87 million (95% UI 1·35–2·58; 37% [95% UI 32–43]) of 5·05 million more deaths of children younger than 5 years than the survival potential frontier. Interpretation: Global child mortality declined by almost half between 2000 and 2019, but progress remains slower in neonates and 65 (32%) of 204 countries, mostly in sub-Saharan Africa and south Asia, are not on track to meet either SDG 3.2 target by 2030. Focused improvements in perinatal and newborn care, continued and expanded delivery of essential interventions such as vaccination and infection prevention, an enhanced focus on equity, continued focus on poverty reduction and education, and investment in strengthening health systems across the development spectrum have the potential to substantially improve U5MR. Given the widespread effects of COVID-19, considerable effort will be required to maintain and accelerate progress
    corecore