19 research outputs found

    MalariaSphere: A greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya

    Get PDF
    BACKGROUND: The development and implementation of innovative vector control strategies for malaria control in Africa requires in-depth ecological studies in contained semi-field environments. This particularly applies to the development and release of genetically-engineered vectors that are refractory to Plasmodium infection. Here we describe a modified greenhouse, designed to simulate a natural Anopheles gambiae Giles ecosystem, and the first successful trials to complete the life-cycle of this mosquito vector therein. METHODS: We constructed a local house, planted crops and created breeding sites to simulate the natural ecosystem of this vector in a screen-walled greenhouse, exposed to ambient climate conditions, in western Kenya. Using three different starting points for release (blood-fed females, virgin females and males, or eggs), we allowed subsequent stages of the life-cycle to proceed under close observation until one cycle was completed. RESULTS: Completion of the life-cycle was observed in all three trials, indicating that the major life-history behaviours (mating, sugar feeding, oviposition and host seeking) occurred successfully. CONCLUSION: The system described can be used to study the behavioural ecology of laboratory-reared and wild mosquitoes, and lends itself to contained studies on the stability of transgenes, fitness effects and phenotypic characteristics of genetically-engineered disease vectors. The extension of this approach, to enable continuous maintenance of successive and overlapping insect generations, should be prioritised. Semi-field systems represent a promising means to significantly enhance our understanding of the behavioural and evolutionary ecology of African malaria vectors and our ability to develop and evaluate innovative control strategies. With regard to genetically-modified mosquitoes, development of such systems is an essential prerequisite to full field releases

    Comparative performance of the Mbita trap, CDC light trap and the human landing catch in the sampling of Anopheles arabiensis, An. funestus and culicine species in a rice irrigation in western Kenya

    Get PDF
    BACKGROUND: Mosquitoes sampling is an important component in malaria control. However, most of the methods used have several shortcomings and hence there is a need to develop and calibrate new methods. The Mbita trap for capturing host-seeking mosquitoes was recently developed and successfully tested in Kenya. However, the Mbita trap is less effective at catching outdoor-biting Anopheles funestus and Anopheles arabiensis in Madagascar and, thus, there is need to further evaluate this trap in diverse epidemiological settings. This study reports a field evaluation of the Mbita trap in a rice irrigation scheme in Kenya METHODS: The mosquito sampling efficiency of the Mbita trap was compared to that of the CDC light trap and the human landing catch in western Kenya. Data was analysed by Bayesian regression of linear and non-linear models. RESULTS: The Mbita trap caught about 17%, 60%, and 20% of the number of An. arabiensis, An. funestus, and culicine species caught in the human landing collections respectively. There was consistency in sampling proportionality between the Mbita trap and the human landing catch for both An. arabiensis and the culicine species. For An. funestus, the Mbita trap portrayed some density-dependent sampling efficiency that suggested lowered sampling efficiency of human landing catch at low densities. The CDC light trap caught about 60%, 120%, and 552% of the number of An. arabiensis, An. funestus, and culicine species caught in the human landing collections respectively. There was consistency in the sampling proportionality between the CDC light trap and the human landing catch for both An. arabiensis and An. funestus, whereas for the culicines, there was no simple relationship between the two methods. CONCLUSIONS: The Mbita trap is less sensitive than either the human landing catch or the CDC light trap. However, for a given investment of time and money, it is likely to catch more mosquitoes over a longer (and hence more representative) period. This trap can therefore be recommended for use by community members for passive mosquito surveillance. Nonetheless, there is still a need to develop new sampling methods for some epidemiological settings. The human landing catch should be maintained as the standard reference method for use in calibrating new methods for sampling the human biting population of mosquitoes

    Insecticide-Treated Nets and Protection against Insecticide-Resistant Malaria Vectors in Western Kenya

    Get PDF
    Insecticide resistance might reduce the efficacy of malaria vector control. In 2013 and 2014, malaria vectors from 50 villages, of varying pyrethroid resistance, in western Kenya were assayed for resistance to deltamethrin. Long-lasting insecticide-treated nets (LLIN) were distributed to households at universal coverage. Children were recruited into 2 cohorts, cleared of malaria-causing parasites, and tested every 2 weeks for reinfection. Infection incidence rates for the 2 cohorts were 2.2 (95% CI 1.9–2.5) infections/person-year and 2.8 (95% CI 2.5–3.0) infections/person-year. LLIN users had lower infection rates than non-LLIN users in both low-resistance (rate ratio 0.61, 95% CI 0.42–0.88) and high-resistance (rate ratio 0.55, 95% CI 0.35–0.87) villages (p = 0.63). The association between insecticide resistance and infection incidence was not significant (p = 0.99). Although the incidence of infection was high among net users, LLINs provided significant protection (p = 0.01) against infection with malaria parasite regardless of vector insecticide resistanc

    Design of a study to determine the impact of insecticide resistance on malaria vector control: a multi-country investigation.

    Get PDF
    BACKGROUND: Progress in reducing the malaria disease burden through the substantial scale up of insecticide-based vector control in recent years could be reversed by the widespread emergence of insecticide resistance. The impact of insecticide resistance on the protective effectiveness of insecticide-treated nets (ITN) and indoor residual spraying (IRS) is not known. A multi-country study was undertaken in Sudan, Kenya, India, Cameroon and Benin to quantify the potential loss of epidemiological effectiveness of ITNs and IRS due to decreased susceptibility of malaria vectors to insecticides. The design of the study is described in this paper. METHODS: Malaria disease incidence rates by active case detection in cohorts of children, and indicators of insecticide resistance in local vectors were monitored in each of approximately 300 separate locations (clusters) with high coverage of malaria vector control over multiple malaria seasons. Phenotypic and genotypic resistance was assessed annually. In two countries, Sudan and India, clusters were randomly assigned to receive universal coverage of ITNs only, or universal coverage of ITNs combined with high coverage of IRS. Association between malaria incidence and insecticide resistance, and protective effectiveness of vector control methods and insecticide resistance were estimated, respectively. RESULTS: Cohorts have been set up in all five countries, and phenotypic resistance data have been collected in all clusters. In Sudan, Kenya, Cameroon and Benin data collection is due to be completed in 2015. In India data collection will be completed in 2016. DISCUSSION: The paper discusses challenges faced in the design and execution of the study, the analysis plan, the strengths and weaknesses, and the possible alternatives to the chosen study design

    Pyrethroid susceptibility of malaria vectors in four Districts of western Kenya.

    Get PDF
    BACKGROUND: Increasing pyrethroid resistance in malaria vectors has been reported in western Kenya where long lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the mainstays of vector control. To ensure the sustainability of insecticide-based malaria vector control, monitoring programs need to be implemented. This study was designed to investigate the extent and distribution of pyrethroid resistance in 4 Districts of western Kenya (Nyando, Rachuonyo, Bondo and Teso). All four Districts have received LLINs while Nyando and Rachuonyo Districts have had IRS campaigns for 3-5 years using pyrethroids. This study is part of a programme aimed at determining the impact of insecticide resistance on malaria epidemiology. METHODS: Three day old adult mosquitoes from larval samples collected in the field, were used for bioassays using the WHO tube bioassay, and mortality recorded 24 hours post exposure. Resistance level was assigned based on the 2013 WHO guidelines where populations with <90% mortality were considered resistant. Once exposed, samples were identified to species using PCR. RESULTS: An. arabiensis comprised at least 94% of all An. gambiae s.l. in Bondo, Rachuonyo and Nyando. Teso was a marked contrast case with 77% of all samples being An. gambiae s.s. Mortality to insecticides varied widely between clusters even in one District with mortality to deltamethrin ranging from 45-100%, while to permethrin the range was 30-100%. Mortality to deltamethrin in Teso District was < 90% in 4 of 6 clusters tested in An arabiensis and <90% in An. gambiae s.s in 5 of 6 clusters tested. To permethrin, mortality ranged between 5.9-95%, with <90% mortality in 9 of 13 and 8 of 13 in An. arabiensis and An. gambiae s.s. respectively. Cluster specific mortality of An. arabiensis between permethin and deltamethrin were not correlated (Z = 2.9505, P = 0.2483). CONCLUSION: High levels of pyrethroid resistance were observed in western Kenya. This resistance does not seem to be associated with either species or location. Insecticide resistance can vary within small geographical areas and such heterogeneity may make it possible to evaluate the impact of resistance on malaria and mosquito parameters within similar eco-epidemiological zones

    Current status of insecticide resistance among malaria vectors in Kenya

    No full text
    Abstract Background Insecticide resistance has emerged as one of the major challenges facing National Malaria Control Programmes in Africa. A well-coordinated national database on insecticide resistance (IRBase) can facilitate the development of effective strategies for managing insecticide resistance and sustaining the effectiveness of chemical-based vector control measures. The aim of this study was to assemble a database on the current status of insecticide resistance among malaria vectors in Kenya. Methods Data was obtained from published literature through PubMed, HINARI and Google Scholar searches and unpublished literature from government reports, research institutions reports and malaria control programme reports. Each data source was assigned a unique identification code and entered into Microsoft Excel 2010 datasheets. Base maps on the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya were generated using ArcGIS Desktop 10.1 (ESRI, Redlands, CA, USA). Results Insecticide resistance status among the major malaria vectors in Kenya was reported in all the four classes of insecticides including pyrethroids, carbamates, organochlorines and organophosphates. Resistance to pyrethroids has been detected in Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.) while resistance to carbamates was limited to An. gambiae (s.s.) and An. arabiensis. Resistance to the organochlorine was reported in An. gambiae (s.s.) and An. funestus (s.s.) while resistance to organophosphates was reported in An. gambiae (s.l.) only. The mechanisms of insecticide resistance among malaria vectors reported include the kdr mutations (L 1014S and L 1014F) and elevated activity in carboxylesterase, glutathione S-transferases (GST) and monooxygenases. The kdr mutations L 1014S and L 1014F were detected in An. gambiae (s.s.) and An. arabiensis populations. Elevated activity of monooxygenases has been detected in both An. arabiensis and An. gambiae (s.s.) populations while the elevated activity of carboxylesterase and GST has been detected only in An. arabiensis populations. Conclusions The geographical maps show the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya. The database generated will provide a guide to intervention policies and programmes in the fight against malaria

    Species Composition, Phenotypic and Genotypic Resistance Levels in Major Malaria Vectors in Teso North and Teso South Subcounties in Busia County, Western Kenya

    No full text
    Introduction. Knockdown resistance (kdr) is strongly linked to pyrethroid insecticide resistance in Anopheles gambiae in Africa, which may have vital significance to the current increased use of pyrethroid-treated bed net programmes. The study is aimed at determining species composition, levels of insecticide resistance, and knockdown patterns in Anopheles gambiae sensu lato in areas with and areas without insecticide resistance in Teso North and Teso South subcounties, Western Kenya. Materials and Methods. For WHO vulnerability tests, mosquito larvae were sampled using a dipper, reared into 3-5-day-old female mosquitoes (4944 at 100 mosquitoes per insecticide) which were exposed to 0.75% permethrin, 0.05% deltamethrin, and 0.1% bendiocarb using the WHO tube assay method. Species identification and kdr East gene PCRs were also performed on randomly selected mosquitoes from the collections; including adult mosquitoes (3448) sampled using standard collection methods. Results. Anopheles gambiae sensu stricto were the majority in terms of species composition at 78.9%. Bendiocarb caused 100% mortality while deltamethrin had higher insecticidal effects (77%) on female mosquitoes than permethrin (71%). Susceptible Kengatunyi cluster had higher proportion of An. arabiensis (20.9%) than resistant Rwatama (10.7%). Kengatunyi mosquitoes exposed to deltamethrin had the highest KDT50 R of 8.2. Both Anopheles gambiae sensu stricto and Anopheles arabiensis had equal S allelic frequency of 0.84. Indoor resting mosquitoes had 100% mortality rate after 24 h since exposure. Overall SS genotypic frequency in Teso North and Teso South subcounties was 79.4% against 13.7% homozygous LL genotype and 6.9% heterozygous LS genotype. There was a significant difference (ρ<0.05) in S allele frequencies between Kengatunyi (0.61) and Rwatama (0.95). Mosquito samples collected in 2013 had the highest S allelic frequency of 0.87. Discussion. Most likely, the higher the selection pressure exerted indoors by insecticidal nets, the higher were the resistance alleles. Use of pyrethroid impregnated nets and agrochemicals may have caused female mosquitoes to select for pyrethroid resistance. Different modes of action and chemical properties in different types of pyrethroids aggravated by a variety of edaphic and climatic factors may have caused different levels of susceptibility in both indoor and outdoor vectors to pyrethroids and carbamate. Species composition and populations in each collection method may have been influenced by insecticide resistance capacity in different species. Conclusions and Recommendations. Both phenotypic and genotypic insecticide resistance levels have been confirmed in Teso North and Teso South subcounties in Western Kenya. Insecticide resistance management practices in Kenya should be fast tracked and harmonized with agricultural sector agrochemical-based activities and legislation, and possibly switch to carbamate use in order to ease selection pressure on pyrethroids which are useable in insecticidal nets and indoor residual spray due to their low human toxicity. The implication of such high resistance levels in mosquitoes collected in Teso subcounties is that resistance is likely to persist and or even increase if monomolecules of permethrin and deltamethrin or both continue to be used in all net- and nonnet-based mosquito control purposes. Usage of mutually reinforcing piperonyl butoxide (PBO) that prohibits particular enzymes vital in metabolic activities inside mosquito systems and has been integrated into pyrethroid-LLINs to create pyrethroid-PBO nets is an extremely viable option
    corecore