2,988 research outputs found

    FINANCIAL AND CURRENT ACCOUNT INTERRELATIONSHIP: AN EMPIRICAL TEST

    Get PDF
    Theoretically, financial account (FA) serves as a means of financing deficit in a country’s current account (CA). With the outburst of the rapid globalization and the liberalization of the capital markets, the function of FA could be a major cause of CA instability. This study empirically investigates the interrelationship between CA and the components of FA for the four crisis-affected Asian countries of Indonesia, Korea, the Philippines and Thailand. Empirical results show that deficit in CA mirror the surplus in FA supporting the theoretical foundation of balance of payment (BOP). We observed CA Granger causes FA suggesting that CA can be used as the control policy variable for the flows of capital in these countries. Therefore, the innovation of CA (whether deficit or surplus) would be important information for the liberalization and globalization of FA.current account, financial account, Asian, causality

    Discovery of Super-Li Rich Red Giants in Dwarf Spheroidal Galaxies

    Full text link
    Stars destroy lithium (Li) in their normal evolution. The convective envelopes of evolved red giants reach temperatures of millions of K, hot enough for the 7Li(p,alpha)4He reaction to burn Li efficiently. Only about 1% of first-ascent red giants more luminous than the luminosity function bump in the red giant branch exhibit A(Li) > 1.5. Nonetheless, Li-rich red giants do exist. We present 15 Li-rich red giants--14 of which are new discoveries--among a sample of 2054 red giants in Milky Way dwarf satellite galaxies. Our sample more than doubles the number of low-mass, metal-poor ([Fe/H] <~ -0.7) Li-rich red giants, and it includes the most-metal poor Li-enhanced star known ([Fe/H] = -2.82, A(Li)_NLTE = 3.15). Because most of these stars have Li abundances larger than the universe's primordial value, the Li in these stars must have been created rather than saved from destruction. These Li-rich stars appear like other stars in the same galaxies in every measurable regard other than Li abundance. We consider the possibility that Li enrichment is a universal phase of evolution that affects all stars, and it seems rare only because it is brief.Comment: 6 pages, 3 figures, accepted to ApJ Letters, version 3 includes additional references and minor typographical change

    Exposing Provenance Metadata Using Different RDF Models

    Full text link
    A standard model for exposing structured provenance metadata of scientific assertions on the Semantic Web would increase interoperability, discoverability, reliability, as well as reproducibility for scientific discourse and evidence-based knowledge discovery. Several Resource Description Framework (RDF) models have been proposed to track provenance. However, provenance metadata may not only be verbose, but also significantly redundant. Therefore, an appropriate RDF provenance model should be efficient for publishing, querying, and reasoning over Linked Data. In the present work, we have collected millions of pairwise relations between chemicals, genes, and diseases from multiple data sources, and demonstrated the extent of redundancy of provenance information in the life science domain. We also evaluated the suitability of several RDF provenance models for this crowdsourced data set, including the N-ary model, the Singleton Property model, and the Nanopublication model. We examined query performance against three commonly used large RDF stores, including Virtuoso, Stardog, and Blazegraph. Our experiments demonstrate that query performance depends on both RDF store as well as the RDF provenance model

    On Reasoning with RDF Statements about Statements using Singleton Property Triples

    Get PDF
    The Singleton Property (SP) approach has been proposed for representing and querying metadata about RDF triples such as provenance, time, location, and evidence. In this approach, one singleton property is created to uniquely represent a relationship in a particular context, and in general, generates a large property hierarchy in the schema. It has become the subject of important questions from Semantic Web practitioners. Can an existing reasoner recognize the singleton property triples? And how? If the singleton property triples describe a data triple, then how can a reasoner infer this data triple from the singleton property triples? Or would the large property hierarchy affect the reasoners in some way? We address these questions in this paper and present our study about the reasoning aspects of the singleton properties. We propose a simple mechanism to enable existing reasoners to recognize the singleton property triples, as well as to infer the data triples described by the singleton property triples. We evaluate the effect of the singleton property triples in the reasoning processes by comparing the performance on RDF datasets with and without singleton properties. Our evaluation uses as benchmark the LUBM datasets and the LUBM-SP datasets derived from LUBM with temporal information added through singleton properties

    Dual gene activation and knockout screen reveals directional dependencies in genetic networks.

    Get PDF
    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair. Based on the results from over 100,000 perturbed gene pairs, we reconstruct a directional dependency network for human K562 leukemia cells and demonstrate how our approach allows the determination of directionality in activating genetic interactions. Our interaction network connects previously uncharacterized genes to well-studied pathways and identifies targets relevant for therapeutic intervention

    A Bayesian Approach to Directed Acyclic Graphs with a Candidate Graph

    Full text link
    Directed acyclic graphs represent the dependence structure among variables. When learning these graphs from data, different amounts of information may be available for different edges. Although many methods have been developed to learn the topology of these graphs, most of them do not provide a measure of uncertainty in the inference. We propose a Bayesian method, baycn (BAYesian Causal Network), to estimate the posterior probability of three states for each edge: present with one direction (XYX \rightarrow Y), present with the opposite direction (XYX \leftarrow Y), and absent. Unlike existing Bayesian methods, our method requires that the prior probabilities of these states be specified, and therefore provides a benchmark for interpreting the posterior probabilities. We develop a fast Metropolis-Hastings Markov chain Monte Carlo algorithm for the inference. Our algorithm takes as input the edges of a candidate graph, which may be the output of another graph inference method and may contain false edges. In simulation studies our method achieves high accuracy with small variation across different scenarios and is comparable or better than existing Bayesian methods. We apply baycn to genomic data to distinguish the direct and indirect targets of genetic variants.Comment: Included analyses for data from GEUVADIS and GTE

    The complete genome sequence of a Neandertal from the Altai Mountains

    Get PDF
    We present a high-quality genome sequence of a Neandertal woman from Siberia. We show that her parents were related at the level of half siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neandertal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neandertals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high quality Neandertal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neandertals and Denisovans
    corecore