27 research outputs found

    Degradation and by-products identification of benzothiazoles and benzotriazoles during chlorination by LC-HR-MS/MS

    Get PDF
    Nowadays, chlorination is the most prevalent disinfection method applied for water treatment in Europe. Chlorine can be supplied as sodium hypochlorite (NaOCl) which reacts in water to produce the disinfectants hypochlorous acid (HOCl) and hypochlorite ion (OCl-), otherwise known as free chlorine. Although the primary purpose of chlorination is the elimination of micropollutants via oxidation, several investigations have shown that chlorine reacts with micropollutants leading in the production of undesired by-products. 1,3-benzothiazoles (BTHs) and 1,2,3-benzotriazoles (BTRs) are classified as high production volume emerging environmental pollutants due to their broad industrial and domestic application, and even though recently several analytical methods have been applied for their determination , there is still a lack of research for their by-products’ identification. Initially, the degradation of three BTHs (BTH, 2-OH-BTH and 2-amino-BTH) and four BTRs (1-H-BTRi, TTRi, XTRi and 1-OH-BTRi) during chlorination was investigated by UHPLC-MS/MS (QqQ). Although chlorination appeared to be an insufficient degradation process for BTH and 1-H-BTRi, all their examined substituted derivatives seem to be significantly degraded when the molar ratio of sodium hypochlorite and the target analytes was between 5000:1 – 1000:1. Then, LC high resolution MS/MS (q-TOFMS) was used to investigate the formation of by-products in the chlorinated samples. Two suspect by-products of 2-amino-BTH and one of XTRi were tentatively identified based on their probable structure, mass accuracy, retention time and fragmentation and isotopic pattern. An interesting observation was the formation of 1-H-BTRi as a degradation product of 1-OH-BTRi during chlorination. Moreover, post-acquisition non-target treatment of the MS data revealed several unknown by-products of the tested analytes

    Colistimethate Acidic Hydrolysis Revisited: Arrhenius Equation Modeling Using UPLC-QToF MS

    No full text
    Colistimethate (CMS), the prodrug of polymyxin E (colistin), is an antibiotic widely used as a last-line therapy against multidrug resistant Gram-negative bacteria, but little is known about its pharmacokinetics as its administration has stopped as a result of high neuro- and nephro-toxicity. The measurement of CMS levels in patients’ biological fluids is of great importance in order to find the optimal dose regimen reducing the drug toxicity. Until now, CMS assay methods are based on the indirect determination after its hydrolysis to colistin (CS). Herein, the aim is to find the optimal conditions for the complete hydrolysis of CMS to CS. The reaction was studied at accelerated conditions: 40 °C, 50 °C, and 60 °C, and the results were evaluated by assessing the Arrhenius equation and computation employing the Tenua software. A validated analytical methodology based on ultra-performance liquid chromatography (UPLC) coupled to a hybrid quadrupole time of flight (QToF) instrument is developed for the simultaneous measurement of CMS and CS. The current methodology resulted in complete hydrolysis, in contrast with the previously reported one

    Colistimethate Acidic Hydrolysis Revisited: Arrhenius Equation Modeling Using UPLC-QToF MS

    No full text
    Colistimethate (CMS), the prodrug of polymyxin E (colistin), is an antibiotic widely used as a last-line therapy against multidrug resistant Gram-negative bacteria, but little is known about its pharmacokinetics as its administration has stopped as a result of high neuro- and nephro-toxicity. The measurement of CMS levels in patients’ biological fluids is of great importance in order to find the optimal dose regimen reducing the drug toxicity. Until now, CMS assay methods are based on the indirect determination after its hydrolysis to colistin (CS). Herein, the aim is to find the optimal conditions for the complete hydrolysis of CMS to CS. The reaction was studied at accelerated conditions: 40 °C, 50 °C, and 60 °C, and the results were evaluated by assessing the Arrhenius equation and computation employing the Tenua software. A validated analytical methodology based on ultra-performance liquid chromatography (UPLC) coupled to a hybrid quadrupole time of flight (QToF) instrument is developed for the simultaneous measurement of CMS and CS. The current methodology resulted in complete hydrolysis, in contrast with the previously reported one

    From By-Products to Fertilizer: Chemical Characterization Using UPLC-QToF-MS via Suspect and Non-Target Screening Strategies

    No full text
    The increasing demands of agriculture and the food market have resulted in intensive agricultural practices using synthetic fertilizers to maximize production. However, significant efforts have been made to implement more environmentally friendly procedures, such as composting, to overcome the adverse impact of these invasive practices. In the terms of this research, composting was applied to the production of two biofertilizers, using onion and mushroom by-products as raw materials respectively. The main purposes of this work were to identify the compounds that pass from the raw materials to the final products (onion-based and mushroom-based), as well as the characterization of the chemical profile of these final products following suspect and non-target screening workflows via UPLC-qToF-MS. Overall, 14 common compounds were identified in the onion and its final product, while 12 compounds were found in the mushroom and its corresponding product. These compounds belong to fatty acids, organic acids, and flavonoids, which could be beneficial to plant health. The determination of parameters, such as the pH, conductivity, organic matter, nitrogen content, and elemental analysis, were conducted for the overall characterization of the aforementioned products

    Two Fast GC-MS Methods for the Measurement of Nicotine, Propylene Glycol, Vegetable Glycol, Ethylmaltol, Diacetyl, and Acetylpropionyl in Refill Liquids for E-Cigarettes

    No full text
    The use of e-cigarettes (ECs) has become increasingly popular worldwide, even though scientific results have not established their safety. Diacetyl (DA) and acetylpropionyl (AP), which can be present in ECs, are linked with lung diseases. Ethyl maltol (EM)—the most commonly used flavoring agent—can be present in toxic concentrations. Until now, there is no methodology for the determination of nicotine, propylene glycol (PG), vegetable glycerin (VG), EM, DA, and acetylpropionyl in e-liquids that can be used as a quality control procedure. Herein, gas chromatography coupled with mass spectrometry (GC-MS) was applied for the development of analytical methodologies for these substances. Two GC-MS methodologies were developed and fully validated, fulfilling the standards for the integration in a routine quality control procedure by manufacturers. As proof of applicability, the methodology was applied for the analysis of several e-liquids. Differences were observed between the labeled and the experimental levels of PG, VG, and nicotine. Three samples contained EM at higher concentrations compared to the other samples, while only one contained DA. These validated methodologies can be used for the quality control analysis of EC liquid samples regarding nicotine, PG, and VG amounts, as well as for the measurement of the EM

    Colistimethate Acidic Hydrolysis Revisited: Arrhenius Equation Modeling Using UPLC-QToF MS

    No full text
    Colistimethate (CMS), the prodrug of polymyxin E (colistin), is an antibiotic widely used as a last-line therapy against multidrug resistant Gram-negative bacteria, but little is known about its pharmacokinetics as its administration has stopped as a result of high neuro- and nephro-toxicity. The measurement of CMS levels in patients' biological fluids is of great importance in order to find the optimal dose regimen reducing the drug toxicity. Until now, CMS assay methods are based on the indirect determination after its hydrolysis to colistin (CS). Herein, the aim is to find the optimal conditions for the complete hydrolysis of CMS to CS. The reaction was studied at accelerated conditions: 40 degrees C, 50 degrees C, and 60 degrees C, and the results were evaluated by assessing the Arrhenius equation and computation employing the Tenua software. A validated analytical methodology based on ultra-performance liquid chromatography (UPLC) coupled to a hybrid quadrupole time of flight (QToF) instrument is developed for the simultaneous measurement of CMS and CS. The current methodology resulted in complete hydrolysis, in contrast with the previously reported one

    Targeted Metabolomics: The LC-MS/MS Based Quantification of the Metabolites Involved in the Methylation Biochemical Pathways

    No full text
    Biochemical methylation reactions mediate the transfer of the methyl group regulating vital biochemical reactions implicated in various diseases as well as the methylation of DNA regulating the replication processes occurring in living organisms. As a finite number of methyl carriers are involved in the methyl transfer, their quantification could aid towards the assessment of an organism’s methylation potential. An Hydrophilic Interaction Chromatography-Liquid Chromatography Multiple Reaction Monitoring (HILIC-LC-MRM) mass spectrometry (MS) methodology was developed and validated according to Food & Drug Administration (FDA), European Medicines Agency (EMA), and International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) for the simultaneous determination of nine metabolites i.e., B12, folic acid, 5-methyltetrahydrofolate, S-adenosylmethionine, S-adenosylhomocysteine, betaine, phosphocholine, N,N-dimethylglycine, and deoxythymidine monophosphate in human blood plasma. The sample pretreatment was based on a single step Solid-phase extraction (SPE) methodology using C18 cartridges. The methodology was found to accurately quantitate the analytes under investigation according to the corresponding dynamic range proposed in the literature for each analyte. The applicability of the method was assessed using blood donor samples and its applicability demonstrated by the assessment of their basal levels, which were shown to agree with the established basal levels. The methodology can be used for diagnostic purposes as well as for epigenetic screening

    Development and validation of a combined methodology for assessing the total quality control of herbal medicinal products--application to oleuropein preparations.

    Get PDF
    Oleuropein (OE) is a secoiridoid glycoside, which occurs mostly in the Oleaceae family presenting several pharmacological properties, including antioxidant, cardio-protective, anti-atherogenic effects etc. Based on these findings OE is commercially available, as Herbal Medicinal Product (HMP), claimed for its antioxidant effects. As there are general provisions of the medicine regulating bodies e.g. European Medicines Agency, the quality of the HMP's must always be demonstrated. Therefore, a novel LC-MS methodology was developed and validated for the simultaneous quantification of OE and its main degradation product, hydroxytyrosol (HT), for the relevant OE claimed HMP's. The internal standard (IS) methodology was employed and separation of OE, HT and IS was achieved on a C18 Fused Core column with 3.1 min overall run time employing the SIM method for the analytical signal acquisition. The method was validated according to the International Conference on Harmonisation requirements and the results show adequate linearity (r(2) > 0.99) over a wide concentration range [0.1-15 μg/mL (n=12)] and a LLOQ value of 0.1 μg/mL, for both OE and HT. Furthermore, as it would be beneficial to control the quality taking into account all the substances of the OE claimed HMP's; a metabolomics-like approach has been developed and applied for the total quality control of the different preparations employing UHPLC-HRMS-multivariate analysis (MVA). Four OE-claimed commercial HMP's have been randomly selected and MVA similarity-based measurements were performed. The results showed that the examined samples could also be differentiated as evidenced according to their scores plot. Batch to batch reproducibility between the samples of the same brand has also been determined and found to be acceptable. Overall, the developed combined methodology has been found to be an efficient tool for the monitoring of the HMP's total quality. Only one OE HMP has been found to be consistent to its label claim

    Typical chromatograms of the targeted quantitation of OE and HT using the proposed methodology.

    No full text
    <p>a. LC-SIM chromatogram of matrix used as the blank solution (MMS), b. LC-SIM chromatogram of the MMS spiked with OE, HT and IS at 2 μg/mL. The ions monitored were m/z 152.5-153.5 for HT (i), m/z 182.5-183.5 for the IS (ii) and m/z 538.5-539.5 for OE (iii) respectively.</p
    corecore