43 research outputs found
Recommended from our members
Impact of inflammatory signaling on radiation biodosimetry: mouse model of inflammatory bowel disease
Background
Ionizing Radiation (IR) is a known pro-inflammatory agent and in the process of development of biomarkers for radiation biodosimetry, a chronic inflammatory disease condition could act as a confounding factor. Hence, it is important to develop radiation signatures that can distinguish between IR-induced inflammatory responses and pre-existing disease. In this study, we compared the gene expression response of a genetically modified mouse model of inflammatory bowel disease (Il10−/−) with that of a normal wild-type mouse to potentially develop transcriptomics-based biodosimetry markers that can predict radiation exposure in individuals regardless of pre-existing inflammatory condition.
Results
Wild-type (WT) and Il10−/− mice were exposed to whole body irradiation of 7 Gy X-rays. Gene expression responses were studied using high throughput whole genome microarrays in peripheral blood 24 h post-irradiation. Analysis resulted in identification of 1962 and 1844 genes differentially expressed (p < 0.001, FDR < 10%) after radiation exposure in Il10−/− and WT mice respectively. A set of 155 genes was also identified as differentially expressed between WT and Il10−/− mice at the baseline pre-irradiation level. Gene ontology analysis revealed that the 155 baseline differentially expressed genes were mainly involved in inflammatory response, glutathione metabolism and collagen deposition. Analysis of radiation responsive genes revealed that innate immune response and p53 signaling processes were strongly associated with up-regulated genes, whereas B-cell development process was found to be significant amongst downregulated genes in the two genotypes. However, specific immune response pathways like MHC based antigen presentation, interferon signaling and hepatic fibrosis were associated with radiation responsive genes in Il10−/− mice but not WT mice. Further analysis using the IPA prediction tool revealed significant differences in the predicted activation status of T-cell mediated signaling as well as regulators of inflammation between WT and Il10−/− after irradiation.
Conclusions
Using a mouse model we established that an inflammatory disease condition could affect the expression of many radiation responsive genes. Nevertheless, we identified a panel of genes that, regardless of disease condition, could predict radiation exposure. Our results highlight the need for consideration of pre-existing conditions in the population in the process of development of reliable biodosimetry markers
Metabolomic Analysis in Severe Childhood Pneumonia in The Gambia, West Africa: Findings from a Pilot Study
Pneumonia remains the leading cause of death in young children globally and improved diagnostics are needed to better identify cases and reduce case fatality. Metabolomics, a rapidly evolving field aimed at characterizing metabolites in biofluids, has the potential to improve diagnostics in a range of diseases. The objective of this pilot study is to apply metabolomic analysis to childhood pneumonia to explore its potential to improve pneumonia diagnosis in a high-burden setting. and Random Forests (RF). ‘Unsupervised’ (blinded) data were analyzed by Principal Component Analysis (PCA), while ‘supervised’ (unblinded) analysis was by Partial Least Squares-Discriminant Analysis (PLS-DA) and Orthogonal Projection to Latent Structures (OPLS). Potential markers were extracted from S-plots constructed following analysis with OPLS, and markers were chosen based on their contribution to the variation and correlation within the data set. The dataset was additionally analyzed with the machine-learning algorithm RF in order to address issues of model overfitting and markers were selected based on their variable importance ranking. Unsupervised PCA analysis revealed good separation of pneumonia and control groups, with even clearer separation of the groups with PLS-DA and OPLS analysis. Statistically significant differences (p<0.05) between groups were seen with the following metabolites: uric acid, hypoxanthine and glutamic acid were higher in plasma from cases, while L-tryptophan and adenosine-5′-diphosphate (ADP) were lower; uric acid and L-histidine were lower in urine from cases. The key limitation of this study is its small size.Metabolomic analysis clearly distinguished severe pneumonia patients from community controls. The metabolites identified are important for the host response to infection through antioxidant, inflammatory and antimicrobial pathways, and energy metabolism. Larger studies are needed to determine whether these findings are pneumonia-specific and to distinguish organism-specific responses. Metabolomics has considerable potential to improve diagnostics for childhood pneumonia
Recommended from our members
Introduction to the Second Bill Morgan Memorial Special Issue: an update on low dose biology, epidemiology, its integration and implications for radiation protection.
Recommended from our members
Introduction to the Second Bill Morgan Memorial Special Issue: an update on low dose biology, epidemiology, its integration and implications for radiation protection.
Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules
<p><b>Purpose:</b> Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual’s exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease.</p> <p><b>Conclusions:</b> Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.</p