119 research outputs found

    The development and evaluation of single cell suspension from wheat and barley as a model system; a first step towards functional genomics application

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The overall research objective was to develop single cell plant cultures as a model system to facilitate functional genomics of monocots, in particular wheat and barley. The essential first step towards achieving the stated objective was the development of a robust, viable single cell suspension culture from both species.</p> <p>Results</p> <p>We established growth conditions to allow routine culturing of somatic cells in 24 well microtiter plate format. Evaluation of the wheat and barley cell suspension as model cell system is a multi step process. As an initial step in the evaluation procedure we chose to study the impact of selected abiotic stress elicitors at the physiological, biochemical and molecular level. We report the results of osmotic stress imposed by NaCl and PEG. As proline is an important osmoprotectant of the cereal cells, colorimetric assay for proline detection was developed for small volumes (200 μl). We performed RT-PCR experiments to study the change in the expression of the genes encoding Δ<sup>1</sup>-pyrroline-5-carboxylate synthetase (P5CS) and Δ<sup>1</sup>-pyrroline-5-carboxylate reductase (PC5R) in response to abiotic stress.</p> <p>Conclusions</p> <p>We found differences between the wheat and barley suspension cultures, barley being more tolerant to the applied osmotic stresses. We suggested a model to explain the obtained differences in stress tolerance between the two species. The suspension cell cultures have proven useful for determining changes in proline concentration and expression level of genes (P5CS, P5CR) under various treatments and we suggest that the cells can be used as a model host system to study gene expression and regulation in monocots.</p

    Quantitative RT-PCR based platform for rapid quantification of the transcripts of highly homologous multigene families and their members during grain development

    Get PDF
    BACKGROUND: Cereal storage proteins represent one of the most important sources of protein for food and feed and they are coded by multigene families. The expression of the storage protein genes exhibits a temporal fluctuation but also a response to environmental stimuli. Analysis of temporal gene expression combined with genetic variation in large multigene families with high homology among the alleles is very challenging. RESULTS: We designed a rapid qRT-PCR system with the aim of characterising the variation in the expression of hordein genes families. All the known D-, C-, B-, and γ-hordein sequences coding full length open reading frames were collected from commonly available databases. Phylogenetic analysis was performed and the members of the different hordein families were classified into subfamilies. Primer sets were designed to discriminate the gene expression level of whole families, subfamilies or individual members. The specificity of the primer sets was validated before successfully applying them to a cDNA population derived from developing grains of field grown Hordeum vulgare cv. Barke. The results quantify the number of moles of transcript contributed to a particular gene family and its subgroups. More over the results indicate the genotypic specific gene expression. CONCLUSIONS: Quantitative RT-PCR with SYBR Green labelling can be a useful technique to follow gene expression levels of large gene families with highly homologues members. We showed variation in the temporal expression of genes coding for barley storage proteins. The results imply that our rapid qRT-PCR system was sensitive enough to identify the presence of alleles and their expression profiles. It can be used to check the temporal fluctuations in hordein expressions or to find differences in their response to environmental stimuli. The method could be extended for cultivar recognition as some of the sequences from the database originated from cv. Golden Promise were not expressed in the studied barley cultivar Barke although showed primer specificity with their cloned DNA sequences
    corecore