355 research outputs found

    Assessing the role of two populations of Aedes japonicus japonicus for Zika virus transmission under a constant and a fluctuating temperature regime

    Get PDF
    BACKGROUND: Since the huge epidemic of Zika virus (ZIKV) in Brazil in 2015, questions were raised to understand which mosquito species could transmit the virus. Aedes aegypti has been described as the main vector. However, other Aedes species (e.g. Ae. albopictus and Ae. japonicus) proven to be competent for other flaviviruses (e.g. West Nile, dengue and yellow fever), have been described as potential vectors for ZIKV under laboratory conditions. One of these, the Asian bush mosquito, Ae. japonicus, is widely distributed with high abundances in central-western Europe. In the present study, infection, dissemination and transmission rates of ZIKV (Dak84 strain) in two populations of Ae. japonicus from Switzerland (Zürich) and France (Steinbach, Haut-Rhin) were investigated under constant (27 °C) and fluctuating (14-27 °C, mean 23 °C) temperature regimes. RESULTS: The two populations were each able to transmit ZIKV under both temperature regimes. Infectious virus particles were detected in the saliva of females from both populations, regardless of the incubation temperature regime, from 7 days post-exposure to infectious rabbit blood. The highest amount of plaque forming units (PFU) (400/ml) were recorded 14 days post-oral infection in the Swiss population incubated at a constant temperature. No difference in terms of infection, dissemination and transmission rate were found between mosquito populations. Temperature had no effect on infection rate but the fluctuating temperature regime resulted in higher dissemination rates compared to constant temperature, regardless of the population. Finally, transmission efficiency ranged between 7-23% and 7-10% for the constant temperature and 0-10% and 3-27% under fluctuating temperatures for the Swiss and the French populations, respectively. CONCLUSIONS: To the best of our knowledge, this is the first study confirming vector competence for ZIKV of Ae. japonicus originating from Switzerland and France at realistic summer temperatures under laboratory conditions. Considering the continuous spread of this species in the northern part of Europe and its adaptation at cooler temperatures, preventative control measures should be adopted to prevent possible ZIKV epidemics

    Blood-feeding, susceptibility to infection with Schmallenberg virus and phylogenetics of Culicoides (Diptera: Ceratopogonidae) from the United Kingdom

    Full text link
    BACKGROUND: Culicoides biting midges (Diptera: Ceratopogonidae) are responsible for the biological transmission of internationally important arboviruses of livestock. In 2011, a novel Orthobunyavirus was discovered in northern Europe causing congenital malformations and abortions in ruminants. From field studies, Culicoides were implicated in the transmission of this virus which was subsequently named Schmallenberg virus (SBV), but to date no assessment of susceptibility to infection of field populations under standardised laboratory conditions has been carried out. We assessed the influence of membrane type (chick skin, collagen, Parafilm M®) when offered in conjunction with an artificial blood-feeding system (Hemotek, UK) on field-collected Culicoides blood-feeding rates. Susceptibility to infection with SBV following blood-feeding on an SBV-blood suspension provided via either (i) the Hemotek system or via (ii) a saturated cotton wool pledglet was then compared. Schmallenberg virus susceptibility was defined by RT-qPCR of RNA extractions of head homogenates and related to Culicoides species and haplotype identifications based on the DNA barcode region of the mitochondrial cytochrome c oxidase 1 (cox1) gene. RESULTS: Culicoides blood-feeding rates were low across all membrane types tested (7.5% chick skin, 0.0% for collagen, 4.4% Parafilm M®, with 6029 female Culicoides being offered a blood meal in total). Susceptibility to infection with SBV through membrane blood-feeding (8 of 109 individuals tested) and pledglet blood-feeding (1 of 94 individuals tested) was demonstrated for the Obsoletus complex, with both C. obsoletus (Meigen) and C. scoticus Downes & Kettle susceptible to infection with SBV through oral feeding. Potential evidence of cryptic species within UK populations was found for the Obsoletus complex in phylogenetic analyses of cox1 DNA barcodes of 74 individuals assessed from a single field-site. CONCLUSIONS: Methods described in this study provide the means to blood-feed Palaearctic Culicoides for vector competence studies and colonisation attempts. Susceptibility to SBV infection was 7.3% for membrane-fed members of the subgenus Avaritia and 1.1% for pledglet-fed. Both C. obsoletus and C. scoticus were confirmed as being susceptible to infection with SBV, with potential evidence of cryptic species within UK Obsoletus complex specimens, however the implications of cryptic diversity in the Obsoletus complex on arbovirus transmission remains unknow

    Putative roles of mosquitoes (Culicidae) and biting midges (Culicoides spp.) as mechanical or biological vectors of lumpy skin disease virus.

    Get PDF
    The stable fly Stomoxys calcitrans (Diptera: Muscidae) is considered as the main mechanical vector of the lumpy skin disease virus (LSDV). In addition, the mosquito species Aedes aegypti (Diptera: Culicidae) was shown to transmit the virus from donor to receptor animals. Retention of the virus for several days was shown for two additional tropical mosquito species and the biting midge Culicoides nubeculosus (Diptera: Ceratopogonidae). In the present study, viral retention for 10- or 7-days post feeding on virus-spiked blood through a membrane was shown for field-collected Aedes japonicus and laboratory-reared Culex pipiens, two widely distributed mosquito species in temperate regions. Viral DNA could be detected from honey-coated Flinders Technology Associates (FTA) cards and shedded faeces for 1 or 4 days after an infectious blood meal was given to Ae. aegypti. Virus increase over time and virus dissemination was observed in laboratory-reared C. nubeculosus, but the virus could be isolated from field-collected biting midges only from the day of exposure to the blood meal. Thus, mosquitoes might serve as mechanical vectors of LSDV in case of interrupted feeding. A putative biological virus transmission by Culicoides biting midges, as suspected from field observations, deserves further investigations

    Field-Reassortment of Bluetongue Virus Illustrates Plasticity of Virus Associated Phenotypic Traits in the Arthropod Vector and Mammalian Host In Vivo

    Full text link
    Reassortment between virus strains can lead to major shifts in the transmission parameters and virulence of segmented RNA viruses, with consequences for spread, persistence, and impact. The ability of these pathogens to adapt rapidly to their environment through this mechanism presents a major challenge in defining the conditions under which emergence can occur

    Vector competence of pre-alpine Culicoides (Diptera: Ceratopogonidae) for bluetongue virus serotypes 1, 4 and 8

    Full text link
    BACKGROUND: Bluetongue disease, caused by bluetongue virus serotype 8 (BTV-8), appeared for the first time in the northern part of Europe in 2006, and subsequently rapidly spread causing severe economic losses to the farming industry. The implicated vectors of BTV in Europe are Culicoides species within the subgenus Avaritia (C. chiopterus, C. dewulfi, C. obsoletus and C. scoticus). Epidemiological data from Switzerland have shown that BTV, whose spread was eliminated at an early stage by vaccination campaigns, had not been circulating among livestock at higher altitudes where other species dominate the Culicoides fauna. In this study, we investigated the extent that Culicoides spp. prevailing at higher altitudes (mainly C. grisescens) can act as vectors for BTV. METHODS: Culicoides were collected at farms in the pre-alpine region (two sites at 1550 m above sea level, masl, referred to as pre-alpine I; one site at 2030 masl, pre-alpine II) and, for comparative purposes, from the Swiss Plateau (one site, 650 masl). They were fed on bovine blood/BTV suspensions (BTV-1, 4 or 8) and incubated for eight days under a fluctuating temperature regime (13-25 °C, mean 19 °C), reflecting a mid-summer warm spell in the pre-alpine region. Susceptibility to BTV transmission was assessed from head homogenates by RT-qPCR and virus isolation. RESULTS: Overall, 9196 female Culicoides were exposed to the three BTV strains through an artificial membrane, with feeding rates of 14-27%. Survival rates of blood-engorged Culicoides females at eight days post-infection depended on both virus serotype and altitude of origin. Virus dissemination (Cq ≤ the cut-off value as determined by serial virus dilutions) was confirmed only for BTV-1 in C. scoticus (dissemination efficiency 22.5%; 9/40) and C. obsoletus (5.6%; 1/18) from the Swiss Plateau area. There was no strong evidence of susceptibility to infection for Culicoides from the pre-alpine area when fed with all BTV strains (BTV-1, 4 and 8). CONCLUSIONS: This study confirms the susceptibility of C. scoticus and C. obsoletus to BTV-1 infection, including under cooler temperatures. Culicoides grisescens, which is highly abundant at higher altitudes, cannot be considered a potential vector under these temperature conditions

    Diversity of transmission outcomes following co-infection of sheep with strains of bluetongue virus serotype 1 and 8

    Get PDF
    Bluetongue virus (BTV) causes an economically important disease, bluetongue (BT), in susceptible ruminants and is transmitted primarily by species of Culicoides biting midges (Diptera: Ceratopogonidae). Since 2006, northern Europe has experienced multiple incursions of BTV through a variety of routes of entry, including major outbreaks of strains of BTV serotype 8 (BTV-8) and BTV serotype 1 (BTV-1), which overlapped in distribution within southern Europe. In this paper, we examined the variation in response to coinfection with strains of BTV-1 and BTV-8 using an in vivo transmission model involving Culicoides sonorensis, low passage virus strains, and sheep sourced in the United Kingdom. In the study, four sheep were simultaneously infected using BTV-8 and BTV-1 intrathoracically inoculated C. sonorensis and co-infections of all sheep with both strains were established. However, there were significant variations in both the initiation and peak levels of virus RNA detected throughout the experiment, as well as in the infection rates in the C. sonorensis that were blood-fed on experimentally infected sheep at peak viremia. This is discussed in relation to the potential for reassortment between these strains in the field and the policy implications for detection of BTV strains

    Potential mechanical transmission of Lumpy skin disease virus (LSDV) by the stable fly (Stomoxys calcitrans) through regurgitation and defecation.

    Get PDF
    Lumpy skin disease (LSD) is a viral disorder of cattle caused by the lumpy skin disease virus (LSDV) which can induce severe infections leading to high economic losses. Being of African origin, the first LSD outbreaks in Europe occurred in Greece and later in the Balkan region. Little is known about the mode of transmission, especially in relation to the potential role of arthropods vectors. The purpose of our study was to investigate the role of Stomoxys calcitrans in the transmission of LSDV and their presence at different farms in Switzerland. Laboratory-reared flies were exposed to LSDV spiked-blood and incubated under a realistic fluctuating temperature regime. Body parts, regurgitated blood, and faecal samples were analysed by qPCR for the presence of viral DNA and infectious virus at different time points post-feeding (p.f.). LSDV DNA was detected in heads, bodies, and regurgitated blood up to three days p.f. and up to two days p.f. in the faeces. Infectious virus was isolated from bodies and faeces up to two days and in the regurgitated blood up to 12 h p.f. There was no increase in viral load, consolidating the role of S. calcitrans as mechanical vectors for LSDV. Stomoxys flies were present at all eight farms investigated, including a farm located at 2128 m asl. The persistence of LSDV in S. calcitrans in combination with the long flight ranges of this abundant and widespread fly might have implications on LSD epidemiology and on implementing control measures during disease outbreaks

    Frozen section analysis of sentinel lymph nodes in patients with breast cancer does not impair the probability to detect lymph node metastases

    Get PDF
    Intra-operative frozen section analysis (FS analysis) of sentinel lymph nodes (SLNs) in patients with breast cancer can prevent a second operation for axillary lymph node dissection. In contrast, loss of tissue during FS analysis may impair the probability to detect lymph node metastases. To determine the effect of tissue loss on the probability of detection of metastases, dimensions and tissue loss resulting from intra-operative frozen section analysis were measured for 21 SLNs. In a mathematical model, the influence of tissue loss on the probability to detect metastases was calculated in relation to SLN size for various pathology protocols: an American, a widely used European, the extensive ‘Milan’ and the Dutch protocol. For median-sized SLN 11 × 8 × 5 mm (length × width × height), FS analysis led to a median loss of 680 μm (13.6%) of the height of the SLN. Irrespective of SLN size or used pathology protocol, the probability of detecting 2 mm metastases remained unchanged or even increased (0–12.8%). Moreover, the probability to detect 0.2 mm metastases increased for the majority of tested combinations of SLN size, tissue loss and used protocol. Only when combining maximum tissue loss and smallest SLN size in the Dutch protocol, or when applying the extensive Milan protocol on a median-sized SLN, the probability to detect 0.2 mm metastases decreased by 2.7% and 14.3%, respectively. Contrary to ‘common knowledge’, doing FS analysis of SLNs does not impair the probability to detect lymph node metastases

    Temperature Dependence of the Extrinsic Incubation Period of Orbiviruses in Culicoides Biting Midges

    Get PDF
    The rate at which viruses replicate and disseminate in competent arthropod vectors is limited by the temperature of their environment, and this can be an important determinant of geographical and seasonal limits to their transmission by arthropods in temperate regions.Here, we present a novel statistical methodology for estimating the relationship between temperature and the extrinsic incubation period (EIP) and apply it to both published and novel data on virus replication for three internationally important orbiviruses (African horse sickness virus (AHSV), bluetongue virus (BTV) and epizootic haemorrhagic disease virus (EHDV)) in their Culicoides vectors. Our analyses show that there can be differences in vector competence for different orbiviruses in the same vector species and for the same orbivirus in different vector species. Both the rate of virus replication (approximately 0.017-0.021 per degree-day) and the minimum temperature required for replication (11-13°C), however, were generally consistent for different orbiviruses and across different Culicoides vector species. The estimates obtained in the present study suggest that previous publications have underestimated the replication rate and threshold temperature because the statistical methods they used included an implicit assumption that all negative vectors were infected.Robust estimates of the temperature dependence of arbovirus replication are essential for building accurate models of transmission and for informing policy decisions about seasonal relaxations to movement restrictions. The methodology developed in this study provides the required robustness and is superior to methods used previously. Importantly, the methods are generic and can readily be applied to other arbovirus-vector systems, as long as the assumptions described in the text are valid
    • …
    corecore