33 research outputs found

    Do Newton's G and Milgrom's a_0 vary with cosmological epoch ?

    Full text link
    In the scalar tensor gravitational theories Newton's constant G_N evolves in the expanding universe. Likewise, it has been speculated that the acceleration scale a_0 in Milgrom's modified Newtonian dynamics (MOND) is tied to the scale of the cosmos, and must thus evolve. With the advent of relativistic implementations of the modified dynamics, one can address the issue of variability of the two gravitational ''constants'' with some confidence. Using TeVeS, the Tensor-Vector-Scalar gravitational theory, as an implementation of MOND, we calculate the dependence of G_N and a_0 on the TeVeS parameters and the coeval cosmological value of its scalar field, \phi_c. We find that G_N, when expressed in atomic units, is strictly nonevolving, a result fully consistent with recent empirical limits on the variation of G_N. By contrast, we find that a_0 depends on \phi_c and may thus vary with cosmological epoch. However, for the brand of TeVeS which seems most promising, a_0 variation occurs on a timescale much longer than Hubble's, and should be imperceptible back to redshift unity or even beyond it. This is consistent with emergent data on the rotation curves of disk galaxies at significants redshifts.Comment: 9 pages, RevTe

    A quest for frustration driven distortion in Y2Mo2O7

    Full text link
    We investigated the nature of the freezing in the geometrically frustrated Heisenberg spin-glass Y2Mo2O7 by measuring the temperature dependence of the static internal magnetic field distribution above the spin-glass temperature, Tg, using the muSR technique. The evolution of the field distribution cannot be explained by changes in the spin susceptibility alone and suggests a lattice deformation. This possibility is addressed by numerical simulations of the Heisenberg Hamiltonian with magneto-elastic coupling at T>0.Comment: 5 pages 4 figures. Accepted for publication in PR

    Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization

    Full text link
    The Tensor-Vector-Scalar theory of gravity, which was designed as a relativistic implementation to the modified dynamics paradigm, has fared quite well as an alternative to dark matter, on both galactic and cosmological scales. However, its performance in the solar system, as embodied in the post-Newtonian formalism, has not yet been fully investigated. Tamaki has recently attempted to calculate the preferred frame parameters for TeVeS, but ignored the cosmological value of the scalar field, thus concluding that the Newtonian potential must be static in order to be consistent with the vector equation. We show that when the cosmological value of the scalar field is taken into account, there is no constraint on the Newtonian potential; however, the cosmological value of the scalar field is tightly linked to the vector field coupling constant K, preventing the former from evolving as predicted by its equation of motion. We then proceed to investigate the post-Newtonian limit of a generalized version of TeVeS, with {\AE}ther type vector action, and show that its \beta,\gamma and \xi parameters are as in GR, while solar system constraints on the preferred frame parameters \alpha_1 and \alpha_2 can be satisfied within a modest range of small values of the scalar and vector fields coupling parameters, and for values of the cosmological scalar field consistent with evolution within the framework of existing models.Comment: 16 pages, 2 figures Figures and corresponding discussion replaced; added reference

    Inhibition of ADAM17 impairs endothelial cell necroptosis and blocks metastasis

    Get PDF
    Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell–induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapie

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Genomic Avenue to Avian Colisepticemia

    No full text
    Huja S, Oren Y, Trost E, et al. Genomic Avenue to Avian Colisepticemia. mBio. 2015;6(1): e01681-14.Here we present an extensive genomic and genetic analysis of Escherichia coli strains of serotype O78 that represent the major cause of avian colisepticemia, an invasive infection caused by avian pathogenic Escherichia coli (APEC) strains. It is associated with high mortality and morbidity, resulting in significant economic consequences for the poultry industry. To understand the genetic basis of the virulence of avian septicemic E. coli, we sequenced the entire genome of a clinical isolate of serotype O78-O78:H19 ST88 isolate 789 (O78-9)-and compared it with three publicly available APEC O78 sequences and one complete genome of APEC serotype O1 strain. Although there was a large variability in genome content between the APEC strains, several genes were conserved, which are potentially critical for colisepticemia. Some of these genes are present in multiple copies per genome or code for gene products with overlapping function, signifying their importance. A systematic deletion of each of these virulence-related genes identified three systems that are conserved in all septicemic strains examined and are critical for serum survival, a prerequisite for septicemia. These are the plasmid-encoded protein, the defective ETT2 (E. coli type 3 secretion system 2) type 3 secretion system ETT2sepsis, and iron uptake systems. Strain O78-9 is the only APEC O78 strain that also carried the regulon coding for yersiniabactin, the iron binding system of the Yersinia high-pathogenicity island. Interestingly, this system is the only one that cannot be complemented by other iron uptake systems under iron limitation and in serum. IMPORTANCE Avian colisepticemia is a severe systemic disease of birds causing high morbidity and mortality and resulting in severe economic losses. The bacteria associated with avian colisepticemia are highly antibiotic resistant, making antibiotic treatment ineffective, and there is no effective vaccine due to the multitude of serotypes involved. To understand the disease and work out strategies to combat it, we performed an extensive genomic and genetic analysis of Escherichia coli strains of serotype O78, the major cause of the disease. We identified several potential virulence factors, conserved in all the colisepticemic strains examined, and determined their contribution to growth in serum, an absolute requirement for septicemia. These findings raise the possibility that specific vaccines or drugs can be developed against these critical virulence factors to help combat this economically important disease
    corecore