27 research outputs found

    Mantle cell lymphomas with concomitant MYC and CCND1 breakpoints are recurrently TdT positive and frequently show high-grade pathological and genetic features

    Get PDF
    Chromosomal breakpoints involving the MYC gene locus, frequently referred to as MYC rearrangements (MYC - R+), are a diagnostic hallmark of Burkitt lymphoma and recurrent in many other subtypes of B-cell lymphomas including follicular lymphoma, diffuse large B-cell lymphoma and other high-grade B-cell lymphomas and are associated with an aggressive clinical course. In remarkable contrast, in MCL, only few MYC - R+ cases have yet been described. In the current study, we have retrospectively analysed 16 samples (MYC - R+, n = 15, MYC - R-, n = 1) from 13 patients and describe their morphological, immunophenotypic and (molecular) genetic features and clonal evolution patterns. Thirteen out of fifteen MYC - R+ samples showed a non-classical cytology including pleomorphic (centroblastic, immunoblastic), anaplastic or blastoid. MYC translocation partners were IG-loci in 4/11 and non-IG loci in 7/11 analysed cases. The involved IG-loci included IGH in 3 cases and IGL in one case. PAX5 was the non-IG partner in 2/7 patients. The MYC - R+ MCL reported herein frequently displayed characteristics associated with an aggressive clinical course including high genomic-complexity (6/7 samples), frequent deletions involving the CDKN2A locus (7/10 samples), high Ki-67 proliferation index (12/13 samples) and frequent P53 expression (13/13 samples). Of note, in 4/14 samples, SOX11 was not or only focally expressed and 3/13 samples showed focal or diffuse TdT-positivity presenting a diagnostic challenge as these features could point to a differential diagnosis of diffuse large B-cell lymphoma and/or lymphoblastic lymphoma/leukaemia

    Inhibition of the autocrine IL-6-JAK2-STAT3-calprotectin axis as targeted therapy for HR-/HER2+ breast cancers

    Get PDF
    HER2-positive (HER2(+)) breast adenocarcinomas are a heterogeneous group in which hormone receptor (HR) status influences therapeutic decisions and patient outcome. By combining genome-wide RNAi screens with regulatory network analysis, we identified STAT3 as a critically activated master regulator of HR(-)/HER2(+) tumors, eliciting tumor dependency in these cells. Mechanistically, HR(-)/HER2(+) cells secrete high levels of the interleukin-6 (IL-6) cytokine, inducing the activation of STAT3, which in turn promotes a second autocrine stimulus to increase S100A8/9 complex (calprotectin) production and secretion. Increased calprotectin levels activate signaling pathways involved in proliferation and resistance. Importantly, we demonstrated that inhibition of the IL-6-Janus kinase 2 (JAK2)-STAT3-calprotectin axis with FDA-approved drugs, alone and in combination with HER2 inhibitors, reduced the tumorigenicity of HR(-)/HER2(+) breast cancers, opening novel targeted therapeutic opportunities

    Establishment and characterization of a new human pancreatic adenocarcinoma cell line with high metastatic potential to the lung

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is still associated with devastating prognosis. Real progress in treatment options has still not been achieved. Therefore new models are urgently needed to investigate this deadly disease. As a part of this process we have established and characterized a new human pancreatic cancer cell line.</p> <p>Methods</p> <p>The newly established pancreatic cancer cell line PaCa 5061 was characterized for its morphology, growth rate, chromosomal analysis and mutational analysis of the K-<it>ras</it>, EGFR and p53 genes. Gene-amplification and RNA expression profiles were obtained using an Affymetrix microarray, and overexpression was validated by IHC analysis. Tumorigenicity and spontaneous metastasis formation of PaCa 5061 cells were analyzed in pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice. Sensitivity towards chemotherapy was analysed by MTT assay.</p> <p>Results</p> <p>PaCa 5061 cells grew as an adhering monolayer with a doubling time ranging from 30 to 48 hours. M-FISH analyses showed a hypertriploid complex karyotype with multiple numerical and unbalanced structural aberrations. Numerous genes were overexpressed, some of which have previously been implicated in pancreatic adenocarcinoma (GATA6, IGFBP3, IGFBP6), while others were detected for the first time (MEMO1, RIOK3). Specifically highly overexpressed genes (fold change > 10) were identified as EGFR, MUC4, CEACAM1, CEACAM5 and CEACAM6. Subcutaneous transplantation of PaCa 5061 into pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice resulted in formation of primary tumors and spontaneous lung metastasis.</p> <p>Conclusion</p> <p>The established PaCa 5061 cell line and its injection into pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice can be used as a new model for studying various aspects of the biology of human pancreatic cancer and potential treatment approaches for the disease.</p

    Non-Random Pattern of Integration for Epstein-Barr Virus with Preference for Gene-Poor Genomic Chromosomal Regions into the Genome of Burkitt Lymphoma Cell Lines

    No full text
    Background: Epstein-Barr virus (EBV) is an oncogenic virus found in about 95% of endemic Burkitt lymphoma (BL) cases. In latently infected cells, EBV DNA is mostly maintained in episomal form, but it can also be integrated into the host genome, or both forms can coexist in the infected cells. Methods: In this study, we mapped the chromosomal integration sites of EBV (EBV-IS) into the genome of 21 EBV+ BL cell lines (BL-CL) using metaphase fluorescence in situ hybridization (FISH). The data were used to investigate the EBV-IS distribution pattern in BL-CL, its relation to the genome instability, and to assess its association to common fragile sites and episomes. Results: We detected a total of 459 EBV-IS integrated into multiple genome localizations with a preference for gene-poor chromosomes. We did not observe any preferential affinity of EBV to integrate into common and rare fragile sites or enrichment of EBV-IS at the chromosomal breakpoints of the BL-CL analyzed here, as other DNA viruses do. Conclusions: We identified a non-random integration pattern into 13 cytobands, of which eight overlap with the EBV-IS in EBV-transformed lymphoblastoid cell lines and with a preference for gene- and CpGs-poor G-positive cytobands. Moreover, it has been demonstrated that the episomal form of EBV interacts in a non-random manner with gene-poor and AT-rich regions in EBV+ cell lines, which may explain the observed affinity for G-positive cytobands in the EBV integration process. Our results provide new insights into the patterns of EBV integration in BL-CL at the chromosomal level, revealing an unexpected connection between the episomal and integrated forms of EBV

    The t(14;18)(q32;q21)/IGH-MALT1 translocation in MALT lymphomas contains templated nucleotide insertions and a major breakpoint region similar to follicular and mantle cell lymphoma

    No full text
    The t(14;18)(q32;q21) involving the immunoglobulin heavy chain locus (IGH) and the MALT1 gene is a recurrent abnormality in mucosa-associated lymphoid tissue (MALT) lymphomas. However, the nucleotide sequence of only one t(14;18)-positive MALT lymphoma has been reported so far. We here report the molecular characterization of the IGH-MALT1 fusion products in 5 new cases of t(14;18)-positive MALT lymphomas. Similar to the IGH-associated translocations in follicular and mantle cell lymphomas, the IGH-MALT1 junctions in MALT lymphoma showed all features of a recombination signal sequence-guided V(D)J-mediated translocation at the IGH locus. Furthermore, analogous to follicular and mantle cell lymphoma, templated nucleotides (T-nucleotides) were identified at the t(14;18)/IGH-MALT1 breakpoint junctions. On chromosome 18, we identified a novel major breakpoint region in MALT1 upstream of its coding region. Moreover, the presence of duplications of MALT1 nucleotides in one case suggests an underlying staggered DNA-break process not consistent with V(D)J-mediated recombination. The molecular characteristics of the t(14;18)/IGH-MALT1 resemble those found in the t(14;18)/IGH-BCL2 in follicular lymphoma and t(11;14)/CCND1-IGH in mantle cell lymphoma, suggesting that these translocations could be generated by common pathomechanisms involving illegitimate V(D)J-mediated recombination on IGH as well as new synthesis of T-nucleotides and nonhomologous end joining (NHEJ) or alternative NHEJ repair pathways on the IGH-translocation partner
    corecore