28 research outputs found
Applied system analysis and technology of designing the software
An analogy is made between the stages of applied system analysis and the stages of software Engineerin
Mantle cell lymphomas with concomitant MYC and CCND1 breakpoints are recurrently TdT positive and frequently show high-grade pathological and genetic features
Chromosomal breakpoints involving the MYC gene locus, frequently referred to as MYC rearrangements (MYC - R+), are a diagnostic hallmark of Burkitt lymphoma and recurrent in many other subtypes of B-cell lymphomas including follicular lymphoma, diffuse large B-cell lymphoma and other high-grade B-cell lymphomas and are associated with an aggressive clinical course. In remarkable contrast, in MCL, only few MYC - R+ cases have yet been described. In the current study, we have retrospectively analysed 16 samples (MYC - R+, n = 15, MYC - R-, n = 1) from 13 patients and describe their morphological, immunophenotypic and (molecular) genetic features and clonal evolution patterns. Thirteen out of fifteen MYC - R+ samples showed a non-classical cytology including pleomorphic (centroblastic, immunoblastic), anaplastic or blastoid. MYC translocation partners were IG-loci in 4/11 and non-IG loci in 7/11 analysed cases. The involved IG-loci included IGH in 3 cases and IGL in one case. PAX5 was the non-IG partner in 2/7 patients. The MYC - R+ MCL reported herein frequently displayed characteristics associated with an aggressive clinical course including high genomic-complexity (6/7 samples), frequent deletions involving the CDKN2A locus (7/10 samples), high Ki-67 proliferation index (12/13 samples) and frequent P53 expression (13/13 samples). Of note, in 4/14 samples, SOX11 was not or only focally expressed and 3/13 samples showed focal or diffuse TdT-positivity presenting a diagnostic challenge as these features could point to a differential diagnosis of diffuse large B-cell lymphoma and/or lymphoblastic lymphoma/leukaemia
Inhibition of the autocrine IL-6-JAK2-STAT3-calprotectin axis as targeted therapy for HR-/HER2+ breast cancers
HER2-positive (HER2(+)) breast adenocarcinomas are a heterogeneous group in which hormone receptor (HR) status influences therapeutic decisions and patient outcome. By combining genome-wide RNAi screens with regulatory network analysis, we identified STAT3 as a critically activated master regulator of HR(-)/HER2(+) tumors, eliciting tumor dependency in these cells. Mechanistically, HR(-)/HER2(+) cells secrete high levels of the interleukin-6 (IL-6) cytokine, inducing the activation of STAT3, which in turn promotes a second autocrine stimulus to increase S100A8/9 complex (calprotectin) production and secretion. Increased calprotectin levels activate signaling pathways involved in proliferation and resistance. Importantly, we demonstrated that inhibition of the IL-6-Janus kinase 2 (JAK2)-STAT3-calprotectin axis with FDA-approved drugs, alone and in combination with HER2 inhibitors, reduced the tumorigenicity of HR(-)/HER2(+) breast cancers, opening novel targeted therapeutic opportunities
The translocations t(6;18;11)(q24;q21;q21) and t(11;14;18)(q21;q32;q21) lead to a fusion of the API2 and MALT1 genes and occur in MALT lymphomas
So far, only one variant translocation of the t(11;18)(q21;q21), the t(11;12;18) (q21;q13;q21), has been reported. We herein describe two new variant translocations, the t(6;18;11)(q24;q21;q21) and the t(11;14;18)(q21;q32;q21), occurring in mucosa-associated lymphoid tissue (MALT) lymphomas. In both cases, fluorescence in situ hybridization (FISH) and reverse transcriptase polymerase chain reaction (RT-PCR) revealed the presence of an 5′API2-3′MALT1 fusion product, encoded on the derivative chromosome 11. Exon 7 of API2 was fused with exon 5 of MALT1 in the t(11;14;18) and with exon 8 of MALT1 in the t(6;18;11). FISH revealed the involvement of the immunoglobulin locus in the t(11;14;18). Rapid amplification of cDNA ends (RACE)-PCR to detect the involved partner gene on 6q showed exclusively wild-type API2 and MALT1 sequences
Establishment and characterization of a new human pancreatic adenocarcinoma cell line with high metastatic potential to the lung
<p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is still associated with devastating prognosis. Real progress in treatment options has still not been achieved. Therefore new models are urgently needed to investigate this deadly disease. As a part of this process we have established and characterized a new human pancreatic cancer cell line.</p> <p>Methods</p> <p>The newly established pancreatic cancer cell line PaCa 5061 was characterized for its morphology, growth rate, chromosomal analysis and mutational analysis of the K-<it>ras</it>, EGFR and p53 genes. Gene-amplification and RNA expression profiles were obtained using an Affymetrix microarray, and overexpression was validated by IHC analysis. Tumorigenicity and spontaneous metastasis formation of PaCa 5061 cells were analyzed in pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice. Sensitivity towards chemotherapy was analysed by MTT assay.</p> <p>Results</p> <p>PaCa 5061 cells grew as an adhering monolayer with a doubling time ranging from 30 to 48 hours. M-FISH analyses showed a hypertriploid complex karyotype with multiple numerical and unbalanced structural aberrations. Numerous genes were overexpressed, some of which have previously been implicated in pancreatic adenocarcinoma (GATA6, IGFBP3, IGFBP6), while others were detected for the first time (MEMO1, RIOK3). Specifically highly overexpressed genes (fold change > 10) were identified as EGFR, MUC4, CEACAM1, CEACAM5 and CEACAM6. Subcutaneous transplantation of PaCa 5061 into pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice resulted in formation of primary tumors and spontaneous lung metastasis.</p> <p>Conclusion</p> <p>The established PaCa 5061 cell line and its injection into pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice can be used as a new model for studying various aspects of the biology of human pancreatic cancer and potential treatment approaches for the disease.</p
Non-Random Pattern of Integration for Epstein-Barr Virus with Preference for Gene-Poor Genomic Chromosomal Regions into the Genome of Burkitt Lymphoma Cell Lines
Background: Epstein-Barr virus (EBV) is an oncogenic virus found in about 95% of endemic Burkitt lymphoma (BL) cases. In latently infected cells, EBV DNA is mostly maintained in episomal form, but it can also be integrated into the host genome, or both forms can coexist in the infected cells. Methods: In this study, we mapped the chromosomal integration sites of EBV (EBV-IS) into the genome of 21 EBV+ BL cell lines (BL-CL) using metaphase fluorescence in situ hybridization (FISH). The data were used to investigate the EBV-IS distribution pattern in BL-CL, its relation to the genome instability, and to assess its association to common fragile sites and episomes. Results: We detected a total of 459 EBV-IS integrated into multiple genome localizations with a preference for gene-poor chromosomes. We did not observe any preferential affinity of EBV to integrate into common and rare fragile sites or enrichment of EBV-IS at the chromosomal breakpoints of the BL-CL analyzed here, as other DNA viruses do. Conclusions: We identified a non-random integration pattern into 13 cytobands, of which eight overlap with the EBV-IS in EBV-transformed lymphoblastoid cell lines and with a preference for gene- and CpGs-poor G-positive cytobands. Moreover, it has been demonstrated that the episomal form of EBV interacts in a non-random manner with gene-poor and AT-rich regions in EBV+ cell lines, which may explain the observed affinity for G-positive cytobands in the EBV integration process. Our results provide new insights into the patterns of EBV integration in BL-CL at the chromosomal level, revealing an unexpected connection between the episomal and integrated forms of EBV
Due to interleukin-6 type cytokine redundancy only glycoprotein 130 receptor blockade efficiently inhibits myeloma growth
Interleukin-6 has an important role in the pathophysiology of multiple myeloma where it supports the growth and survival of the malignant plasma cells in the bone marrow. It belongs to a family of cytokines which use the glycoprotein 130 chain for signal transduction, such as oncostatin M or leukemia inhibitory factor. Targeting interleukin-6 in plasma cell diseases is currently evaluated in clinical trials with monoclonal antibodies. Here, efforts were made to elucidate the contribution of interleukin-6 and glycoprotein 130 signaling in malignant plasma cell growth in vivo. In the xenograft severe combined immune deficiency model employing our interleukin-6-dependent plasma cell line INA-6, the lack of human interleukin-6 induced autocrine interleukin-6 production and a proliferative response to other cytokines of the glycoprotein 130 family. Herein, mice were treated with monoclonal antibodies against human interleukin-6 (elsilimomab/B-E8), the interleukin-6 receptor (B-R6), and with an antibody blocking glycoprotein 130 (B-R3). While treatment of mice with interleukin-6 and interleukin-6 receptor antibodies resulted in a modest delay in tumor growth, the development of plasmacytomas was completely prevented with the anti-glycoprotein 130 antibody. Importantly, complete inhibition was also achieved using F(ab’)2-fragments of monoclonal antibody B-R3. Tumors harbor activated signal transducer and activator of transcription 3, and in vitro, the antibody inhibited leukemia inhibitory factor stimulated signal transducer and activator of transcription 3 phosphorylation and cell growth, while being less effective against interleukin-6. In conclusion, the growth of INA-6 plasmacytomas in vivo under interleukin-6 withdrawal remains strictly dependent on glycoprotein 130, and other glycoprotein 130 cytokines may substitute for interleukin-6. Antibodies against glycoprotein 130 are able to overcome this redundancy and should be explored for a possible therapeutic window