8 research outputs found

    Direct electrophysiological evidence for prefrontal control of hippocampal processing during voluntary forgetting

    Get PDF
    Forgetting does not necessarily reflect failure to encode information but can, to some extent, also be voluntarily controlled. Previous studies have suggested that voluntary forgetting relies on active inhibition of encoding processes in the hippocampus by the dorsolateral prefrontal cortex (DLPFC) [1, 2, 3, 4]. During attentional and sensorimotor processing, enhanced DLPFC theta power alongside increased alpha/beta oscillations are a neural signature of an inhibitory top-down mechanism, with theta oscillations reflecting prefrontal control and alpha/beta oscillations occurring in areas targeted by inhibition [5, 6, 7, 8, 9, 10, 11, 12]. Here, we used intracranial EEG recordings in presurgical epilepsy patients implanted in DLPFC (n = 13) and hippocampus (n = 15) during an item-method directed forgetting paradigm. We found that voluntary forgetting is associated with increased neural oscillations in the low theta band (3–5 Hz) in DLPFC and in a broad theta/alpha/beta (6–18 Hz) frequency range in hippocampus. Combining time-lagged correlation analysis, phase synchronization, and Granger causality in 6 patients with electrodes in both DLPFC and hippocampus, we obtained converging evidence for a top-down control of hippocampal activity by the DLPFC. Together, our results provide strong support for a model in which voluntary forgetting relies on enhanced inhibition of the hippocampus by the DLPFC

    Seeing ‘Where’ through the Ears: Effects of Learning-by-Doing and Long-Term Sensory Deprivation on Localization Based on Image-to-Sound Substitution

    Get PDF
    BACKGROUND: Sensory substitution devices for the blind translate inaccessible visual information into a format that intact sensory pathways can process. We here tested image-to-sound conversion-based localization of visual stimuli (LEDs and objects) in 13 blindfolded participants. METHODS AND FINDINGS: Subjects were assigned to different roles as a function of two variables: visual deprivation (blindfolded continuously (Bc) for 24 hours per day for 21 days; blindfolded for the tests only (Bt)) and system use (system not used (Sn); system used for tests only (St); system used continuously for 21 days (Sc)). The effect of learning-by-doing was assessed by comparing the performance of eight subjects (BtSt) who only used the mobile substitution device for the tests, to that of three subjects who, in addition, practiced with it for four hours daily in their normal life (BtSc and BcSc); two subjects who did not use the device at all (BtSn and BcSn) allowed assessment of its use in the tasks we employed. The impact of long-term sensory deprivation was investigated by blindfolding three of those participants throughout the three week-long experiment (BcSn, BcSn/c, and BcSc); the other ten subjects were only blindfolded during the tests (BtSn, BtSc, and the eight BtSt subjects). Expectedly, the two subjects who never used the substitution device, while fast in finding the targets, had chance accuracy, whereas subjects who used the device were markedly slower, but showed much better accuracy which improved significantly across our four testing sessions. The three subjects who freely used the device daily as well as during tests were faster and more accurate than those who used it during tests only; however, long-term blindfolding did not notably influence performance. CONCLUSIONS: Together, the results demonstrate that the device allowed blindfolded subjects to increasingly know where something was by listening, and indicate that practice in naturalistic conditions effectively improved "visual" localization performance

    Intracranially recorded memory-related potentials reveal higher posterior than anterior hippocampal involvement in verbal encoding and retrieval

    No full text
    The human hippocampus is essential for both encoding and recollection, but it remains controversial whether there is a functionally different involvement of anterior versus posterior parts of the hippocampus in these memory processes. In the present study, we examined encoding and retrieval processes via intrahippocampal recordings in 27 patients with unilateral temporal lobe epilepsy. Multicontact depth electrodes were implanted along the longitudinal axis of the hippocampus as part of the presurgical evaluation. In a continuous word recognition test, subjects had to indicate whether words were new or already presented. Recognized old words, as compared to new words, resulted in a larger P600 component, as well as in a larger late negative component (LNC, 600-900 msec). In addition, subsequently remembered words elicited a larger positivity (400 to 900 msec) than later forgotten words. We found differences concerning the distribution along the hippocampus for the LNC old-new effect, reflecting successful retrieval, as well as for the subsequent memory effect, reflecting successful encoding. Both effects were larger the further posterior an electrode was located in the hippocampus. Findings are suggestive for a predominant posterior hippocampal involvement in both verbal encoding and retrieval
    corecore