68 research outputs found

    The impact of ambient temperature on mortality among the urban population in Skopje, Macedonia during the period 1996–2000

    Get PDF
    BACKGROUND: This study assesses the relationship between daily numbers of deaths and variations in ambient temperature within the city of Skopje, R. Macedonia. METHODS: The daily number of deaths from all causes, during the period 1996–2000, as well as those deaths from cardiovascular diseases, occurring within the city of Skopje were related to the average daily temperature on the same day using Multiple Regression statistical analyses. Temperature was measured within the regression model as two complementary variables: 'Warm' and 'Cold'. Excess winter mortality was calculated as winter deaths (deaths occurring in December to March) minus the average of non-winter deaths (April to July of the current year and August to November of the previous year). RESULTS: In this study the average daily total of deaths was 7% and 13% greater in the cold when compared to the whole period and warm period respectively. The same relationship was noticed for deaths caused by cardiovascular diseases. The Regression Beta Coefficient (b = -0.19) for the total mortality as a function of the temperature in Skopje during the period 1996–2000 was statistically significant with negative connotation as was the circulatory mortality due to average temperature (statistically significant regression Beta coefficient (b = -0.24)). A measure of this increase is provided, on an annual basis, in the form of the excess winter mortality figure. CONCLUSION: Mortality with in the city of Skopje displayed a marked seasonality, with peaks in the winter and relative troughs in the summer

    Trends and determinants of excess winter mortality in New Zealand: 1980 to 2000

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although many countries experience an increase in mortality during winter, the magnitude of this increase varies considerably, suggesting that some winter excess may be avoidable. Conflicting evidence has been presented on the role of gender, region and deprivation. Little has been published on the magnitude of excess winter mortality (EWM) in New Zealand (NZ) and other Southern Hemisphere countries.</p> <p>Methods</p> <p>Monthly mortality rates per 100,000 population were calculated from routinely collected national mortality data for 1980 to 2000. Generalised negative binomial regression models were used to compare mortality rates between winter (June–September) and the warmer months (October–May).</p> <p>Results</p> <p>From 1980–2000 around 1600 excess winter deaths occurred each year with winter mortality rates 18% higher than expected from non-winter rates. Patterns of EWM by age group showed the young and the elderly to be particularly vulnerable. After adjusting for all major covariates, the winter:non-winter mortality rate ratio from 1996–2000 in females was 9% higher than in males. Mortality caused by diseases of the circulatory system accounted for 47% of all excess winter deaths from 1996–2000 with mortality from diseases of the respiratory system accounting for 31%. There was no evidence to suggest that patterns of EWM differed by ethnicity, region or local-area based deprivation level. No decline in seasonal mortality was evident over the two decades.</p> <p>Conclusion</p> <p>EWM in NZ is substantial and at the upper end of the range observed internationally. Interventions to reduce EWM are important, but the surprising lack of variation in EWM by ethnicity, region and deprivation, provides little guidance for how such mortality can be reduced.</p

    Effects of weather variability and air pollutants on emergency admissions for cardiovascular and cerebrovascular diseases

    Get PDF
    This is an Author's Original Manuscript of an Article submitted for consideration in the International journal of environmental health research copyright (c) 2012 Taylor & Francis; International journal of environmental health research is available online at http://www.tandfonline.com/10.1080/09603123.2011.650155信州大学博士(医学)・学位論文・平成23年3月31日授与(甲第901号)・掘綾We examined the effect of ambient temperature, air pressure and air pollutants on daily emergency admissions by identifying the cause of admission for each type of stroke and cardiovascular disease using generalized linear Poisson regressionmodels allowing for overdispersion, and controlling for seasonal and inter-annual variations, days of the week and public holidays, levels of influenza and respiratory syncytial viruses. Every 1 degrees C decrease in mean temperature was associated with an increase in the daily number of emergency admissions by 7.83% (95% CI 2.06-13.25) for acute coronary syndrome (ACS) and heart failure, by 35.57% (95% CI 15.59-59.02) for intracerebral haemorrhage (ICH) and by 11.71% (95% CI 4.1-19.89) for cerebral infarction. An increase of emergency admissions due to ICH (3.25% (95% CI 0.94-5.51)), heart failure (3.56% (95% CI 1.09-5.96)) was observed at every 1 hPa decrease in air pressure from the previous days. We found stronger detrimental effect of cold on stroke than cardiovascular disease.Articlejournal articl

    Seasonal effects of influenza on mortality in a subtropical city

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza has been associated with a heavy burden of mortality. In tropical or subtropical regions where influenza viruses circulate in the community most of the year, it is possible that there are seasonal variations in the effects of influenza on mortality, because of periodic changes in environment and host factors as well as the frequent emergence of new antigenically drifted virus strains. In this paper we explored this seasonal effect of influenza.</p> <p>Methods</p> <p>A time-varying coefficient Poisson regression model was fitted to the weekly numbers of mortality of Hong Kong from 1996 to 2002. Excess risks associated with influenza were calculated to assess the seasonal effects of influenza.</p> <p>Results</p> <p>We demonstrated that the effects of influenza were higher in winter and late spring/early summer than other seasons. The two-peak pattern of seasonal effects of influenza was found for cardio-respiratory disease and sub-categories pneumonia and influenza, chronic obstructive pulmonary disease, cerebrovascular diseases and ischemic heart disease as well as for all-cause deaths.</p> <p>Conclusion</p> <p>The results provide insight into the possibility that seasonal factors may have impact on virulence of influenza besides their effects on virus transmission. The results warrant further studies into the mechanisms behind the seasonal effect of influenza.</p

    Assessment and prevention of acute health effects of weather conditions in Europe, the PHEWE project: background, objectives, design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The project "Assessment and prevention of acute health effects of weather conditions in Europe" (PHEWE) had the aim of assessing the association between weather conditions and acute health effects, during both warm and cold seasons in 16 European cities with widely differing climatic conditions and to provide information for public health policies.</p> <p>Methods</p> <p>The PHEWE project was a three-year pan-European collaboration between epidemiologists, meteorologists and experts in public health. Meteorological, air pollution and mortality data from 16 cities and hospital admission data from 12 cities were available from 1990 to 2000. The short-term effect on mortality/morbidity was evaluated through city-specific and pooled time series analysis. The interaction between weather and air pollutants was evaluated and health impact assessments were performed to quantify the effect on the different populations. A heat/health watch warning system to predict oppressive weather conditions and alert the population was developed in a subgroup of cities and information on existing prevention policies and of adaptive strategies was gathered.</p> <p>Results</p> <p>Main results were presented in a symposium at the conference of the International Society of Environmental Epidemiology in Paris on September 6<sup>th </sup>2006 and will be published as scientific articles. The present article introduces the project and includes a description of the database and the framework of the applied methodology.</p> <p>Conclusion</p> <p>The PHEWE project offers the opportunity to investigate the relationship between temperature and mortality in 16 European cities, representing a wide range of climatic, socio-demographic and cultural characteristics; the use of a standardized methodology allows for direct comparison between cities.</p

    Macrosocial determinants of population health in the context of globalization

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55738/1/florey_globalization_2007.pd
    corecore