3 research outputs found

    Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human–Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers

    No full text
    Interactivity between humans and smart systems, including wearable, body-attachable, or implantable platforms, can be enhanced by realization of multifunctional human–machine interfaces, where a variety of sensors collect information about the surrounding environment, intentions, or physiological conditions of the human to which they are attached. Here, we describe a stretchable, transparent, ultrasensitive, and patchable strain sensor that is made of a novel sandwich-like stacked piezoresisitive nanohybrid film of single-wall carbon nanotubes (SWCNTs) and a conductive elastomeric composite of polyurethane (PU)-poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS). This sensor, which can detect small strains on human skin, was created using environmentally benign water-based solution processing. We attributed the tunability of strain sensitivity (<i>i</i>.<i>e</i>., gauge factor), stability, and optical transparency to enhanced formation of percolating networks between conductive SWCNTs and PEDOT phases at interfaces in the stacked PU-PEDOT:PSS/SWCNT/PU-PEDOT:PSS structure. The mechanical stability, high stretchability of up to 100%, optical transparency of 62%, and gauge factor of 62 suggested that when attached to the skin of the face, this sensor would be able to detect small strains induced by emotional expressions such as laughing and crying, as well as eye movement, and we confirmed this experimentally

    MOESM1 of Increased risk of metabolic disorders in healthy young adults with family history of diabetes: from the Korea National Health and Nutrition Survey

    No full text
    Additional file 1: Table S1. Baseline characteristics and family history of study subjects by glycemic status. Table S2. Metabolic healthy status by family history of diabetes. Table S3. Subgroup analysis according to BMI. Table S4. Clinical characteristics of non-diabetic subjects according to family history of T2DM in first-degree relatives. Table S5. Number of family members with diabetes and the risk of abnormal glucose tolerance and metabolic syndrome. Table S6. Exercise and dietary pattern by family history of diabetes

    Cavomycins A–C, Linear Oligomer Depsipeptides from an Annelid-Associated Streptomyces cavourensis

    No full text
    Three unique linear oligomeric depsipeptides, designated as cavomycins A-C (1-3), were identified from Streptomyces cavourensis, a gut bacterium associated with the annelid Paraleonnates uschakovi. The structures of these depsipeptides were determined through a combination of spectroscopic methods and chemical derivatization techniques, including methanolysis, the modified Mosher's method, advanced Marfey's methods, and phenylglycine methyl ester derivatization. The unique dipeptidyl residue arrangements in compounds 1-3 indicate that they are not degradation products of valinomycin. Compound 2 and its methylation derivative 2a exhibited antiproliferative activity against PANC-1 pancreatic cancer cells with IC50 values of 1.2 and 1.7 ÎĽM, respectively.</p
    corecore