61 research outputs found

    Gonadotropin induced transcriptional and epigenetic regulation of gene expression in ovarian granulosa cells

    Get PDF
    Mammalian pituitary gland secretes two gonadotropins (GPNs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) that act on the gonads to regulate gonadal development and functions. In females, FSH promotes the development of ovarian follicles, and LH induces oocyte maturation, induction of ovulation, and formation of corpus luteum. Oocytes do not express the GPN receptors, FSHR or LHCGR. GPN responses are accomplished by follicular somatic cells, theca cells (TCs) and granulosa cells (GCs) that surround the oocytes and express GPN receptors. GPN signaling regulates the expression of genes in TCs and GCs, which are essential for ovarian functions. We have studied the GPN-induced regulation of genes in GCs using immature rats. Four-week-old female rats were administered with exogenous GPNs, pregnant mare’s serum GPN (PMSG), and human chorionic GPN (hCG), which act like long acting FSH and LH, respectively. GCs were isolated from the rat ovaries 48h after PMSG administration, 4hr after hCG administration following the PMSG-priming or without GPN administration. RNA-sequencing was performed to identify the differentially expressed genes in GCs following PMSG or PMSG and hCG administration. The majority (~87%) of the differentially expressed genes 48h after PMSG treatment were found to be downregulated indicating that gene repression plays a crucial role in FSH-induced follicle development. However, hCG treatment upregulated a group of the genes in GCs that was repressed by PMSG. Strikingly, hCG administration rarely impacted the expression of any GC-gene, which was not modulated by PMSG administration. This observation suggests that FSH-induced epigenetic and/or transcriptional regulation is essential for subsequent LH actions in GCs. We further investigated the mechanism of GPN-mediated gene regulation in GCs by methyl-sequencing of genomic DNA. Our results demonstrated that changes in genome-wide DNA methylation is an important epigenetic process that is vital for GPN-mediated gene regulation in GCs

    Effect of Amino Acids on the Generation of Ginsenoside Rg3 Epimers by Heat Processing and the Anticancer Activities of Epimers in A2780 Human Ovarian Cancer Cells

    Get PDF
    Ginsenosides are the active components of Panax ginseng. Many research studies indicate that these deglycosylated, less-polar ginsenosides have better bioactivity than the major ginsenosides. In the present study, we sought to verify the enhanced anticancer effect of P. ginseng extract after undergoing the Maillard reaction as well as elucidate the underlying mechanism of action. The effects of 9 amino acids were tested; among them, the content of 20(S)-Rg3 in the ginseng extract increased to more than 30, 20, and 20% when processed with valine, arginine, and alanine, respectively, compared with that after normal heat processing. The ginseng extract that was heat-processed with arginine exhibited the most potent inhibitory effect on A2780 ovarian cancer cell proliferation. Therefore, the generation of 20(S)-Rg3 was suggested to be involved in this effect. Moreover, the inhibitory effect of 20(S)-Rg3 on A2780 cell proliferation was significantly stronger than that of 20(R)-Rg3. Protein expression levels of cleaved caspase-3, caspase-8, caspase-9, and PARP in the A2780 ovarian cancer cells markedly increased, whereas the expression of BID decreased after 20(S)-Rg3 treatment. Therefore, we confirmed that the anticancer effects of the products of ginseng that was heat-processed with arginine are mediated mainly via the generation of the less-polar ginsenoside 20(S)-Rg3

    Transcriptional regulation of Satb1 in mouse trophoblast stem cells

    Get PDF
    SATB homeobox proteins are important regulators of developmental gene expression. Among the stem cell lineages that emerge during early embryonic development, trophoblast stem (TS) cells exhibit robust SATB expression. Both SATB1 and SATB2 act to maintain the trophoblast stem-state. However, the molecular mechanisms that regulate TS-specific Satb expression are not yet known. We identified Satb1 variant 2 as the predominant transcript in trophoblasts. Histone marks, and RNA polymerase II occupancy in TS cells indicated an active state of the promoter. A novel cis-regulatory region with active histone marks was identified ∼21 kbp upstream of the variant 2 promoter. CRISPR/Cas9 mediated disruption of this sequence decreased Satb1 expression in TS cells and chromosome conformation capture analysis confirmed looping of this distant regulatory region into the proximal promoter. Scanning position weight matrices across the enhancer predicted two ELF5 binding sites in close proximity to SATB1 sites, which were confirmed by chromatin immunoprecipitation. Knockdown of ELF5 downregulated Satb1 expression in TS cells and overexpression of ELF5 increased the enhancer-reporter activity. Interestingly, ELF5 interacts with SATB1 in TS cells, and the enhancer activity was upregulated following SATB overexpression. Our findings indicate that trophoblast-specific Satb1 expression is regulated by long-range chromatin looping of an enhancer that interacts with ELF5 and SATB proteins

    A novel glucagon-related peptide (GCRP) and its receptor GCRPR account for coevolution of their family members in vertebrates

    Get PDF
    The glucagon (GCG) peptide family consists of GCG, glucagon-like peptide 1 (GLP1), and GLP2, which are derived from a common GCG precursor, and the glucose-dependent insulinotropic polypeptide (GIP). These peptides interact with cognate receptors, GCGR, GLP1R, GLP2R, and GIPR, which belong to the secretin-like G protein-coupled receptor (GPCR) family. We used bioinformatics to identify genes encoding a novel GCG-related peptide (GCRP) and its cognate receptor, GCRPR. The GCRP and GCRPR genes were found in representative tetrapod taxa such as anole lizard, chicken, and Xenopus, and in teleosts including medaka, fugu, tetraodon, and stickleback. However, they were not present in mammals and zebrafish. Phylogenetic and genome synteny analyses showed that GCRP emerged through two rounds of whole genome duplication (2R) during early vertebrate evolution. GCRPR appears to have arisen by local tandem gene duplications from a common ancestor of GCRPR, GCGR, and GLP2R after 2R. Biochemical ligand-receptor interaction analyses revealed that GCRP had the highest affinity for GCRPR in comparison to other GCGR family members. Stimulation of chicken, Xenopus, and medaka GCRPRs activated Gαs-mediated signaling. In contrast to chicken and Xenopus GCRPRs, medaka GCRPR also induced Gαq/11-mediated signaling. Chimeric peptides and receptors showed that the K(16)M(17)K(18) and G(16)Q(17)A(18) motifs in GCRP and GLP1, respectively, may at least in part contribute to specific recognition of their cognate receptors through interaction with the receptor core domain. In conclusion, we present novel data demonstrating that GCRP and GCRPR evolved through gene/genome duplications followed by specific modifications that conferred selective recognition to this ligand-receptor pair

    Comparison of the methods for platelet rich plasma preparation in horses

    No full text
    Abstract Platelet rich plasma (PRP) is popularly used in the horse industry to enhance regeneration of tissue injury that has limitation of blood supply. This study aimed to compare the methods for platelet rich plasma preparation since they has not been established yet. Blood was collected from six horses and platelets were concentrated by three different methods (2-step centrifugation, separated centrifugation and separated centrifugation using histopaque). Concentrated blood was analyzed using Advia hematology systems. In the result, separated centrifugation with histopaque showed the significantly lower number of red blood cells than other groups. The 2-step centrifugation showed the significantly higher number of white blood cells than other groups, while it contained the highest concentration of red blood cells among three groups. In the 2-step centrifugation, separated centrifugation and separated centrifugation with histopaque, platelets were concentrated 4.5, 5.3 and 5.6 times, respectively. And no significant difference of the platelet concentration between the three groups was found. This study demonstrated that separated centrifugation using histopaque was the best method for platelet rich plasma preparation because of the proper amount of platelets and the separation of red blood cells from platelet rich plasma

    Effectiveness of Nootropics in Combination with Cholinesterase Inhibitors on Cognitive Function in Mild-to-Moderate Dementia: A Study Using Real-World Data

    No full text
    The clinical benefits of nootropics in the treatment of cognitive decline has been either limited or controversial. This study aimed to observe the effectiveness of cholinesterase inhibitor (ChEI) and nootropics combination in the treatment of cognitive impairment in dementia. Data were based on electronic medical records in a university health system. Patients with mild-to-moderate dementia and no history of prior cognitive enhancer use were included (n = 583). The subjects were categorized into the ChEI only group and the ChEI and nootropics combination group. The primary outcome measure was the change in cognitive function, as assessed by the mini-mental state examination (MMSE) from baseline to 300–400 days after the first ChEI prescription. Subsequent analyses were conducted in consideration of the dementia type, medical adherence, and type of nootropics. The changes in MMSE scores from baseline to endpoint were not significantly different between the two groups. In Alzheimer’s dementia, the combination group showed significantly less deterioration in MMSE language subscale scores compared to the ChEI only group (F = 6.86, p = 0.009), and the difference was consistent in the highly adherent subjects (F = 10.16, p = 0.002). The choline alfoscerate and the ginkgo biloba extract subgroups in Alzheimer’s dementia showed more significant improvements in the MMSE language subscale scores compared to the other nootropics subgroup (F = 7.04, p = 0.001). The present study showed that the effectiveness of ChEI and nootropics combination on cognition may appear differently according to the dementia type. This emphasizes the need for well-controlled studies to generalize the effectiveness of nootropics across various clinical settings

    Hedgehog Signaling in Gonadal Development and Function

    No full text
    Three distinct hedgehog (HH) molecules, (sonic, desert, and indian), two HH receptors (PTCH1 and PTCH2), a membrane bound activator (SMO), and downstream three transcription factors (GLI1, GLI2, and GLI3) are the major components of the HH signaling. These signaling molecules were initially identified in Drosophila melanogaster. Later, it has been found that the HH system is highly conserved across species and essential for organogenesis. HH signaling pathways play key roles in the development of the brain, face, skeleton, musculature, lungs, and gastrointestinal tract. While the sonic HH (SHH) pathway plays a major role in the development of the central nervous system, the desert HH (DHH) regulates the development of the gonads, and the indian HH (IHH) acts on the development of bones and joints. There are also overlapping roles among the HH molecules. In addition to the developmental role of HH signaling in embryonic life, the pathways possess vital physiological roles in testes and ovaries during adult life. Disruption of DHH and/or IHH signaling results in ineffective gonadal steroidogenesis and gametogenesis. While DHH regulates the male gonadal functions, ovarian functions are regulated by both DHH and IHH. This review article focuses on the roles of HH signaling in gonadal development and reproductive functions with an emphasis on ovarian functions. We have acknowledged the original research work that initially reported the findings and discussed the subsequent studies that have further analyzed the role of HH signaling in testes and ovaries

    The Role of SHIP1 on Apoptosis and Autophagy in the Adipose Tissue of Obese Mice

    No full text
    Obesity-induced adipocyte apoptosis promotes inflammation and insulin resistance. Src homology domain-containing inositol 5′-phosphatase 1 (SHIP1) is a key factor of apoptosis and inflammation. However, the role of SHIP1 in obesity-induced adipocyte apoptosis and autophagy is unclear. We found that diet-induced obesity (DIO) mice have significantly greater crown-like structures and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL)-positive cells than ob/ob or control mice. Using RNA sequencing (RNA-seq) analysis, we identified that the apoptosis- and inflammation-related gene Ship1 is upregulated in DIO and ob/ob mice compared with control mice. In particular, DIO mice had more SHIP1-positive macrophages and lysosomal-associated membrane protein 1 (LAMP1) as well as a higher B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 ratio compared with ob/ob or control mice. Furthermore, caloric restriction attenuated adipose tissue inflammation, apoptosis, and autophagy by reversing increases in SHIP1-associated macrophages, Bax/Bcl2-ratio, and autophagy in DIO and ob/ob mice. These results demonstrate that DIO, not ob/ob, aggravates adipocyte inflammation, apoptosis, and autophagy due to differential SHIP1 expression. The evidence of decreased SHIP1-mediated inflammation, apoptosis, and autophagy indicates new therapeutic approaches for obesity-induced chronic inflammatory diseases
    corecore