35 research outputs found

    Cross-reactive broadly neutralizing antibodies: timing is everything

    Get PDF
    The recent surge of research into new broadly neutralizing antibodies in HIV-1 infection has recharged the field of HIV-1 vaccinology. In this review we discuss the currently known broadly neutralizing antibodies and focus on factors that may shape these antibodies in natural infection. We further discuss the role of these antibodies in the clinical course of the infection and consider immunological obstacles in inducing broadly neutralizing antibodies with a vaccine

    Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies

    Get PDF
    Broadly neutralizing HIV antibodies (bNAbs) can recognize carbohydrate-dependent epitopes on gp120. In contrast to previously characterized glycan-dependent bNAbs that recognize high-mannose N-glycans, PGT121 binds complex-type N-glycans in glycan microarrays. We isolated the B-cell clone encoding PGT121, which segregates into PGT121-like and 10-1074–like groups distinguished by sequence, binding affinity, carbohydrate recognition, and neutralizing activity. Group 10-1074 exhibits remarkable potency and breadth but no detectable binding to protein-free glycans. Crystal structures of unliganded PGT121, 10-1074, and their likely germ-line precursor reveal that differential carbohydrate recognition maps to a cleft between complementarity determining region (CDR)H2 and CDRH3. This cleft was occupied by a complex-type N-glycan in a “liganded” PGT121 structure. Swapping glycan contact residues between PGT121 and 10-1074 confirmed their importance for neutralization. Although PGT121 binds complex-type N-glycans, PGT121 recognized high-mannose-only HIV envelopes in isolation and on virions. As HIV envelopes exhibit varying proportions of high-mannose- and complex-type N-glycans, these results suggest promiscuous carbohydrate interactions, an advantageous adaptation ensuring neutralization of all viruses within a given strain

    Lower Broadly Neutralizing Antibody Responses in Female Versus Male HIV-1 Infected Injecting Drug Users.

    Get PDF
    Understanding the factors involved in the development of broadly neutralizing antibody (bNAb) responses in natural infection can guide vaccine design aimed at eliciting protective bNAb responses. Most of the studies to identify and study the development of bNAb responses have been performed in individuals who had become infected via homo- or heterosexual HIV-1 transmission; however, the prevalence and characteristics of bNAb responses in injecting drug users (IDUs) have been underrepresented. We retrospectively studied the prevalence of bNAb responses in HIV-1 infected individuals in the Amsterdam Cohort, including 50 male and 35 female participants who reported injecting drug use as the only risk factor. Our study revealed a significantly lower prevalence of bNAb responses in females compared to males. Gender, transmission route and CD4+ count at set point, but not viral load, were independently associated with the development of bNAb responses in IDUs. To further explore the influences of gender in the setting of IDU, we also looked into the Swiss 4.5k Screen. There we observed lower bNAb responses in female IDUs as well. These results reveal that the emergence of bNAbs may be dependent on multiple factors, including gender. Therefore, the effect of gender on the development of bNAb responses is a factor that should be taken into account when designing vaccine efficacy trials

    Plasma CXCL13 but Not B Cell Frequencies in Acute HIV Infection Predicts Emergence of Cross-Neutralizing Antibodies

    Get PDF
    Immunological events in acute HIV-1 infection before peak viremia (hyperacute phase) may contribute to the development of broadly cross-neutralizing antibodies. Here, we used pre-infection and acute-infection peripheral blood mononuclear cells and plasma samples from 22 women, including 10 who initiated antiretroviral treatment in Fiebig stages I–V of acute infection to study B cell subsets and B-cell associated cytokines (BAFF and CXCL13) kinetics for up to ~90 days post detection of plasma viremia. Frequencies of B cell subsets were defined by flow cytometry while plasma cytokine levels were measured by ELISA. We observed a rapid but transient increase in exhausted tissue-like memory, activated memory, and plasmablast B cells accompanied by decline in resting memory cells in untreated, but not treated women. B cell subset frequencies in untreated women positively correlated with viral loads but did not predict emergence of cross-neutralizing antibodies measured 12 months post detection of plasma viremia. Plasma BAFF and CXCL13 levels increased only in untreated women, but their levels did not correlate with viral loads. Importantly, early CXCL13 but not BAFF levels predicted the later emergence of detectable cross-neutralizing antibodies at 12 months post detection of plasma viremia. Thus, hyperacute HIV-1 infection is associated with B cell subset changes, which do not predict emergence of cross-neutralizing antibodies. However, plasma CXCL13 levels during hyperacute infection predicted the subsequent emergence of cross-neutralizing antibodies, providing a potential biomarker for the evaluation of vaccines designed to elicit cross-neutralizing activity or for natural infection studies to explore mechanisms underlying development of neutralizing antibodies

    Humoral immunity in HIV-1 infection

    Get PDF
    Tijdens een hiv-infectie zorgt het afweermechanisme voor neutraliserende antistoffen die kunnen verhoeden dat het virus een nieuwe cel infecteert. Het virus kan hier echter aan ontsnappen door zich te veranderen. Sommige mensen hebben antistoffen die gericht zijn op de minder veranderlijke delen van het virus: zogeheten breed-neutraliserende antistoffen. In de Amsterdamse Cohort Studies had een derde van de hiv-patiënten deze antistoffen binnen drie jaar na infectie. Dit had echter geen invloed op het natuurlijk ziektebeloop. Zelda Euler toont aan dat hiv sinds het begin van de wereldwijde epidemie in de jaren tachtig minder gevoelig is geworden voor neutraliserende antistoffen. Dat is van belang voor vaccinontwikkeling gebaseerd op deze antistoffen

    Prevalence of cross-reactive HIV-1-neutralizing activity in HIV-1-infected patients with rapid or slow disease progression

    No full text
    Objective: The native envelope gp160 trimer of HIV-1 is thought to shield vulnerable epitopes that could otherwise elicit effectively neutralizing antibodies. However, little is known about the prevalence of naturally occurring broadly neutralizing activity in serum of HIV-1-infected individuals. Methods: Here, we studied 35 participants of the Amsterdam Cohort Studies on HIV-1 infection (20 long-term nonprogressors and 15 progressors) for the presence of cross-reactive neutralizing activity in their sera at 2 and 4 years after seroconversion. Neutralizing activity was tested in a pseudovirus assay, against a panel of HIV-1 envelope variants from subtypes A, 13, C, and D. Results: Already at year 2 after seroconversion, seven out of 35 individuals (20%) had cross-reactive neutralizing activity, which increased to 11 individuals (31%) at 4 years after seroconversion. There was no difference in the prevalence of cross-reactive neutralizing serum activity between long-term nonprogressors and progressors. Interestingly, high plasma viral RNA load and low CD4(+) cell count at set-point were associated with early development of cross-reactive neutralizing activity. Neutralization titers in serum increased during the course of infection for 91% of individuals studied here, although less rapidly for those who did not develop cross-reactive neutralizing activity. Conclusion: Overall, we here demonstrate a relatively high prevalence of cross-reactive neutralizing serum activity in HIV-1-infected patients, which increased with duration of infection. These data may imply that immunogenicity of the native envelope spike of HIV-1 for eliciting cross-reactive humoral immune responses may be better than previously anticipated. (C) 2009 Wolters Kluwer Health | Lippincott Williams & Wilkin

    Genome-wide association study on the development of cross-reactive neutralizing antibodies in HIV-1 infected individuals.

    Get PDF
    Broadly neutralizing antibodies may protect against HIV-1 acquisition. In natural infection, only 10-30% of patients have cross-reactive neutralizing humoral immunity which may relate to viral and or host factors. To explore the role of host genetic markers in the formation of cross-reactive neutralizing activity (CrNA) in HIV-1 infected individuals, we performed a genome-wide association study (GWAS), in participants of the Amsterdam Cohort Studies with known CrNA in their sera. Single-nucleotide polymorphisms (SNPs) with the strongest P-values are located in the major histocompatibility complex (MHC) region, close to MICA (P = 7.68 × 10(-7)), HLA-B (P = 6.96 × 10(-6)) and in the coding region of HCP5 (P = 1.34 × 10(-5)). However, none of the signals reached genome-wide significance. Our findings underline the potential involvement of genes close or within the MHC region with the development of CrNA
    corecore