6 research outputs found

    3D printing injectable microbeads using a composite liposomal ink for local treatment of peritoneal diseases.

    Get PDF
    The peritoneal cavity offers an attractive administration route for challenging-to-treat diseases, such as peritoneal carcinomatosis, post-surgical adhesions, and peritoneal fibrosis. Achieving a uniform and prolonged drug distribution throughout the entire peritoneal space, though, is difficult due to high clearance rates, among others. To address such an unmet clinical need, alternative drug delivery approaches providing sustained drug release, reduced clearance rates, and a patient-centric strategy are required. Here, we describe the development of a 3D-printed composite platform for the sustained release of the tyrosine kinase inhibitor gefitinib (GEF), a small molecule drug with therapeutic applications for peritoneal metastasis and post-surgical adhesions. We present a robust method for the production of biodegradable liposome-loaded hydrogel microbeads that can overcome the pharmacokinetic limitations of small molecules with fast clearance rates, a current bottleneck for the intraperitoneal (IP) administration of these therapeutics. By means of an electromagnetic droplet printhead, we 3D printed microbeads employing an alginate-based ink loaded with GEF-containing multilamellar vesicles (MLVs). The sustained release of GEF from microbeads was demonstrated. In vitro studies on an immortalized human hepatic cancer cell line (Huh-7) proved concentration-dependent cell death. These findings demonstrate the potential of 3D-printed alginate microbeads containing liposomes for delivering small drug compounds into the peritoneum, overcoming previous limitations of IP drug delivery

    The aminotransferase Aat initiates 3-phenyllactic acid biosynthesis in Pediococcus acidilactici

    Get PDF
    The function of the aminotransferase Aat (GenBank Protein WP_159211138) from Pediococcus acidilactici FAM 18098 was studied in vivo. For this purpose, the gene was replaced with an erythromycin resistance gene using the temperature-sensitive Escherichia coli-Pediococcus shuttle plasmid pSET4T_Δaat. The knockout was verified by PCR and genome sequencing. Subsequently, the differences between the metabolism of the knockout and of the wild-type strain were investigated by determining the free amino acids and organic acids in culture supernatants. It was found that the knockout mutant no longer synthesized 3-phenyllactic acid (PLA) and 4-hydroxyphenyllactic acid (HPLA). Additionally, the mutant strain no longer catabolized phenylalanine. Metabolic pathway analysis using the KEGG database indicate that P. acidilactici cannot synthesize α-ketoglutarate that is a predominant amino-group acceptor in many transamination reactions. To study the transfer of the amino group of phenylalanine, the wild-type strain was incubated with [15N] phenylalanine. Mass spectrometry showed that during fermentation, [15N] alanine was formed, indicating that pyruvic acid is an amino group acceptor in P. acidilactici. The present study shows that Aat plays a crucial role in PLA/HPLA biosynthesis and pyruvic acid is an amino acceptor in transamination reactions in P. acidilactici

    Liposomal aggregates sustain the release of rapamycin and protect cartilage from friction

    Full text link
    Liposomes show promise as biolubricants for damaged cartilage, but their small size results in low joint and cartilage retention. We developed a zinc ion-based liposomal drug delivery system for local osteoarthritis therapy, focusing on sustained release and tribological protection from phospholipid lubrication properties. Our strategy involved inducing aggregation of negatively charged liposomes with zinc ions to extend rapamycin (RAPA) release and improve cartilage lubrication. Liposomal aggregation occurred within 10 min and was irreversible, facilitating excess cation removal. The aggregates extended RAPA release beyond free liposomes and displayed irregular morphology influenced by RAPA. At nearly 100 ”m, the aggregates were large enough to exceed the previously reported size threshold for increased joint retention. Tribological assessment on silicon surfaces and ex vivo porcine cartilage revealed the system's excellent protective ability against friction at both nano- and macro-scales. Moreover, RAPA was shown to attenuate the fibrotic response in human OA synovial fibroblasts. Our findings suggest the zinc ion-based liposomal drug delivery system has potential to enhance OA therapy through extended release and cartilage tribological protection, while also illustrating the impact of a hydrophobic drug like RAPA on liposome aggregation and morphology

    Liposomal aggregates sustain the release of rapamycin and protect cartilage from friction.

    Get PDF
    Liposomes show promise as biolubricants for damaged cartilage, but their small size results in low joint and cartilage retention. We developed a zinc ion-based liposomal drug delivery system for local osteoarthritis therapy, focusing on sustained release and tribological protection from phospholipid lubrication properties. Our strategy involved inducing aggregation of negatively charged liposomes with zinc ions to extend rapamycin (RAPA) release and improve cartilage lubrication. Liposomal aggregation occurred within 10 min and was irreversible, facilitating excess cation removal. The aggregates extended RAPA release beyond free liposomes and displayed irregular morphology influenced by RAPA. At nearly 100 ”m, the aggregates were large enough to exceed the previously reported size threshold for increased joint retention. Tribological assessment on silicon surfaces and ex vivo porcine cartilage revealed the system's excellent protective ability against friction at both nano- and macro-scales. Moreover, RAPA was shown to attenuate the fibrotic response in human OA synovial fibroblasts. Our findings suggest the zinc ion-based liposomal drug delivery system has potential to enhance OA therapy through extended release and cartilage tribological protection, while also illustrating the impact of a hydrophobic drug like RAPA on liposome aggregation and morphology

    Identification of a species-specific aminotransferase in Pediococcus acidilactici capable of forming α-aminobutyrate

    Get PDF
    During cheese ripening, the bacterial strain Pediococcus acidilactici FAM18098 produces the non-proteinogenic amino acid, α-aminobutyrate (AABA). The metabolic processes that lead to the biosynthesis of this compound are unknown. In this study, 10 P. acidilactici, including FAM18098 and nine Pediococcus pentosaceus strains, were screened for their ability to produce AABA. All P. acidilactici strains produced AABA, whereas the P. pentosaceus strains did not. The genomes of the pediococcal strains were sequenced and searched for genes encoding aminotransferases to test the hypothesis that AABA could result from the transamination of α-ketobutyrate. A GenBank and KEGG database search revealed the presence of a species-specific aminotransferase in P. acidilactici. The gene was cloned and its gene product was produced as a His-tagged fusion protein in Escherichia coli to determine the substrate specificity of this enzyme. The purified recombinant protein showed aminotransferase activity at pH 5.5. It catalyzed the transfer of the amino group from leucine, methionine, AABA, alanine, cysteine, and phenylalanine to the amino group acceptor α-ketoglutarate. Αlpha-ketobutyrate could replace α-ketoglutarate as an amino group acceptor. In this case, AABA was produced at significantly higher levels than glutamate. The results of this study show that P. acidilactici possesses a novel aminotransferase that might play a role in cheese biochemistry and has the potential to be used in biotechnological processes for the production of AABA
    corecore