43 research outputs found

    Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells.

    Get PDF
    PurposeThe RPE cell line ARPE-19 provides a dependable and widely used alternative to native RPE. However, replication of the native RPE phenotype becomes more difficult because these cells lose their specialized phenotype after multiple passages. Compounding this problem is the widespread use of ARPE-19 cells in an undifferentiated state to attempt to model RPE functions. We wished to determine whether suitable culture conditions and differentiation could restore the RPE-appropriate expression of genes and proteins to ARPE-19, along with a functional and morphological phenotype resembling native RPE. We compared the transcriptome of ARPE-19 cells kept in long-term culture with those of primary and other human RPE cells to assess the former's inherent plasticity relative to the latter.MethodsARPE-19 cells at passages 9 to 12 grown in DMEM containing high glucose and pyruvate with 1% fetal bovine serum were differentiated for up to 4 months. Immunocytochemistry was performed on ARPE-19 cells grown on filters. Total RNA extracted from ARPE-19 cells cultured for either 4 days or 4 months was used for RNA sequencing (RNA-Seq) analysis using a 2 × 50 bp paired end protocol. The RNA-Seq data were analyzed to identify the affected pathways and recognize shared ontological classification among differentially expressed genes. RPE-specific mRNAs and miRNAs were assessed with quantitative real-time (RT)-PCR, and proteins with western blotting.ResultsARPE-19 cells grown for 4 months developed the classic native RPE phenotype with heavy pigmentation. RPE-expressed genes, including RPE65, RDH5, and RDH10, as well as miR-204/211, were greatly increased in the ARPE-19 cells maintained at confluence for 4 months. The RNA-Seq analysis provided a comprehensive view of the relative abundance and differential expression of the genes in the differentiated ARPE-19 cells. Of the 16,757 genes with detectable signals, nearly 1,681 genes were upregulated, and 1,629 genes were downregulated with a fold change of 2.5 or more differences between 4 months and 4 days of culture. Gene Ontology analysis showed that the upregulated genes were associated with visual cycle, phagocytosis, pigment synthesis, cell differentiation, and RPE-related transcription factors. The majority of the downregulated genes play a role in cell cycle and proliferation.ConclusionsThe ARPE-19 cells cultured for 4 months developed a phenotype characteristic of native RPE and expressed proteins, mRNAs, and miRNAs characteristic of the RPE. Comparison of the ARPE-19 RNA-Seq data set with that of primary human fetal RPE, embryonic stem cell-derived RPE, and native RPE revealed an important overall similar expression ratio among all the models and native tissue. However, none of the cultured models reached the absolute values in the native tissue. The results of this study demonstrate that low-passage ARPE-19 cells can express genes specific to native human RPE cells when appropriately cultured and differentiated

    Genome-wide changes in protein translation efficiency are associated with autism

    Get PDF
    We previously proposed that changes in the efficiency of protein translation are associated with autism spectrum disorders (ASDs). This hypothesis connects environmental factors and genetic factors because each can alter translation efficiency. For genetic factors, we previously tested our hypothesis using a small set of ASD-associated genes, a small set of ASD-associated variants, and a statistic to quantify by how much a single nucleotide variant (SNV) in a protein coding region changes translation speed. In this study, we confirm and extend our hypothesis using a published set of 1,800 autism quartets (parents, one affected child and one unaffected child) and genome-wide variants. Then, we extend the test statistic to combine translation efficiency with other possibly relevant variables: ribosome profiling data, presence/absence of CpG dinucleotides, and phylogenetic conservation. The inclusion of ribosome profiling abundances strengthens our results for male–male sibling pairs. The inclusion of CpG information strengthens our results for female–female pairs, giving an insight into the significant gender differences in autism incidence. By combining the single-variant test statistic for all variants in a gene, we obtain a single gene score to evaluate how well a gene distinguishes between affected and unaffected siblings. Using statistical methods, we compute gene sets that have some power to distinguish between affected and unaffected siblings by translation efficiency of gene variants. Pathway and enrichment analysis of those gene sets suggest the importance of Wnt signaling pathways, some other pathways related to cancer, ATP binding, and ATP-ase pathways in the etiology of ASDs

    A comprehensive clinical and biochemical functional study of a novel RPE65 hypomorphic mutation

    Get PDF
    PURPOSE. Later onset and progression of retinal dystrophy occur with some RPE65 missense mutations. The functional consequences of the novel P25L RPE65 mutation was correlated with its early-childhood phenotype and compared with other pathogenic missense mutations. METHODS. In addition to typical clinical tests, fundus autofluorescence (FAF), optical coherence tomography (OCT), and two-color threshold perimetry (2CTP) were measured. RPE65 mutations were screened by SSCP and direct sequencing. Isomerase activity of mutant RPE65 was assayed in 293F cells and quantified by HPLC analysis of retinoids. RESULTS. A very mild phenotype was detected in a now 7-yearold boy homozygous for the P25L mutation in RPE65. Although abnormal dark adaptation was noticed early, best corrected visual acuity was 20/20 at age 5 years and 20/30 at age 7 years. Nystagmus was absent. Cone electroretinogram (ERG) was measurable, rod ERG severely reduced, and FAF very low. 2CTP detected mainly cone-mediated responses in scotopic conditions, and light-adapted cone responses were approximately 1.5 log units below normal. High-resolution spectral domain OCT revealed morphologic changes. Isomerase activity in 293F cells transfected with RPE65/P25L was reduced to 7.7% of wild-type RPE65-transfected cells, whereas RPE65/ L22P-transfected cells had 13.5%. CONCLUSIONS. The mild clinical phenotype observed is consistent with the residual activity of a severely hypomorphic mutant RPE65. Reduction to Ͻ10% of wild-type RPE65 activity by homozygous P25L correlates with almost complete rod function loss and cone amplitude reduction. Functional survival of cones is possible in patients with residual RPE65 isomerase activity. This patient should profit most from gene therapy. (Invest Ophthalmol Vis Sci. 2008;49:5235-5242) DOI: 10.1167/iovs.07-1671 H uman mutations in the gene for the highly preferentially expressed RPE protein RPE65 are associated with a spectrum of retinal dystrophies ranging from more severe earlyonset conditions, variously described as Leber congenital amaurosis type 2/autosomal recessive childhood-onset severe retinal dystrophy or early-onset severe retinal dystrophy (LCA2/arCSR, EOSRD) to later onset conditions described as autosomal recessive retinitis pigmentosa (arRP). 1-7 Recently, RPE65 has been established as the isomerase central to the retinoid visual cycle. 8 -10 This cycle 11 is crucial for supply of the chromophore 11-cis retinal for visual pigment regeneration. Animal models have contributed greatly to our understanding of the role of RPE65 in the visual cycle, regeneration, and retinal dystrophy. Rpe65 knockout mice display a biochemical phenotype consisting of extreme chromophore starvation (no rhodopsin) in the photoreceptors concurrent with overaccumulation of all-trans retinyl esters in the RPE 10 and are extremely insensitive to light. This insensitivity to light protects Rpe65 Ϫ/Ϫ mice from light damage, establishing rhodopsin as the mediator of light-induced retinal damage. 12 There is also a natural mutation in mouse Rpe65 called rd12. 14,15 The utility of gene therapy was established by preclinical trials in these dogs. 21 This level appears to be more than enough to maintain near-normal function. In contrast, human RPE65 EOSRD displays a wide spectrum of severity, age of onset, and progression not seen in animal models. In this article, we present the mild phenotypic consequences of a homozygous P25L missense mutation in a young patient and correlate these with the biochemical effect of this mutation on RPE65 activity. We show that even though the isomerase activity of the mutant RPE65 was quite impaired, the patient had near-normal visual acuity. However, rod function was extremely impaired. In addition, short-wavelength cones appeared more impaired than long-wavelength cones, consistent with findings in other patients with RPE65 mutations that blue color vision is much more and earlier impaired than is red vision, opposite to the usual case in cone dystrophies. These From th

    Mutational signatures and mutable motifs in cancer genomes

    Get PDF
    Cancer is a genetic disorder, meaning that a plethora of different mutations, whether somatic or germ line, underlie the etiology of the ‘Emperor of Maladies’. Point mutations, chromosomal rearrangements and copy number changes, whether they have occurred spontaneously in predisposed individuals or have been induced by intrinsic or extrinsic (environmental) mutagens, lead to the activation of oncogenes and inactivation of tumor suppressor genes, thereby promoting malignancy. This scenario has now been recognized and experimentally confirmed in a wide range of different contexts. Over the past decade, a surge in available sequencing technologies has allowed the sequencing of whole genomes from liquid malignancies and solid tumors belonging to different types and stages of cancer, giving birth to the new field of cancer genomics. One of the most striking discoveries has been that cancer genomes are highly enriched with mutations of specific kinds. It has been suggested that these mutations can be classified into ‘families’ based on their mutational signatures. A mutational signature may be regarded as a type of base substitution (e.g. C:G to T:A) within a particular context of neighboring nucleotide sequence (the bases upstream and/or downstream of the mutation). These mutational signatures, supplemented by mutable motifs (a wider mutational context), promise to help us to understand the nature of the mutational processes that operate during tumor evolution because they represent the footprints of interactions between DNA, mutagens and the enzymes of the repair/replication/modification pathway

    Biochemical evidence for the tyrosine involvement in cationic intermediate stabilization in mouse β-carotene 15, 15'-monooxygenase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-carotene 15,15'-monooxygenase (BCMO1) catalyzes the crucial first step in vitamin A biosynthesis in animals. We wished to explore the possibility that a carbocation intermediate is formed during the cleavage reaction of BCMO1, as is seen for many isoprenoid biosynthesis enzymes, and to determine which residues in the substrate binding cleft are necessary for catalytic and substrate binding activity. To test this hypothesis, we replaced substrate cleft aromatic and acidic residues by site-directed mutagenesis. Enzymatic activity was measured <it>in vitro </it>using His-tag purified proteins and <it>in vivo </it>in a β-carotene-accumulating <it>E. coli </it>system.</p> <p>Results</p> <p>Our assays show that mutation of either Y235 or Y326 to leucine (no cation-π stabilization) significantly impairs the catalytic activity of the enzyme. Moreover, mutation of Y326 to glutamine (predicted to destabilize a putative carbocation) almost eliminates activity (9.3% of wt activity). However, replacement of these same tyrosines with phenylalanine or tryptophan does not significantly impair activity, indicating that aromaticity at these residues is crucial. Mutations of two other aromatic residues in the binding cleft of BCMO1, F51 and W454, to either another aromatic residue or to leucine do not influence the catalytic activity of the enzyme. Our <it>ab initio </it>model of BCMO1 with β-carotene mounted supports a mechanism involving cation-π stabilization by Y235 and Y326.</p> <p>Conclusions</p> <p>Our data are consistent with the formation of a substrate carbocation intermediate and cation-π stabilization of this intermediate by two aromatic residues in the substrate-binding cleft of BCMO1.</p

    Generalized portrait of cancer metabolic pathways inferred from a list of genes overexpressed

    No full text
    More than half a century from postulated Warburg theory of cancer cells origin, a question of changed metabolism in cancer is again taking the central place. Generalized picture of cancer metabolism was replaced by analysis of signaling and oncogenes in each type of cancer for several decades. However, now empowered with wealth of knowledge about tumor suppressors, oncogenes, and signaling pathways, reprogramming of cellular metabolism (e.g., increased glycolysis to respiration ratio in cancer cells) reemerged as an important element of cancer progression. To analyze level of expression of various proteins including metabolic enzymes across various cancers we used dbEST and Unigene data. We delineated a list of genes that are overexpressed in different types of cancer. We also grouped overexpressed enzymes into KEGG pathways and analyzed adjacent pathways to describe enzymatic reactions that take place in cancer cells and to identify major players that are abundant in cancer protein machinery. Glycolysis/gluconeogenesis and oxidative phosphorylation are the most abundant pathways although several other pathways are enriched in genes from our list. Ubiquitously overexpressed genes could be marked as nonspecific cancer-associated genes when analyzing genes that are overexpressed in certain types of cancer. Thus the list of overexpressed genes may be a useful tool for cancer research

    A retinyl palmitate-loaded lipid-xanthophyll nanoparticle system for substrate delivery in minimal visual cycle in vitro

    No full text
    The vision cycle in vertebrates includes the essential step of generating 11-cis retinol from all-trans retinyl palmitate. If the visual cycle is disrupted, or if there is no 11-cis retinol formed, people can develop permanent vision loss from conditions such as Leber congenital amaurosis (LCA20) and retinitis pigmentosa (RP20), respectively. This project aims to introduce retinyl palmitate, a type of all-trans retinyl ester, directly into human embryonic kidney (HEK) cells by packaging and delivering in large unilamellar vesicles (LUVs) together with xanthophylls to protect from photodamage. If successful, this would mean that different types of retinyl esters and labeled esters could be delivered to the cells and possibly to the eye. Cell samples were cultured, immunoblotted, extracted, and then analyzed by HPLC. More 11-cis retinol extracted in Expi293 cells suggests Expi293 cells as a superior model in which to replicate the vision cycle. It can be concluded that LRAT, an enzyme that esterifies all-trans retinol, is present endogenously in Expi293 cells and when continuing this experiment, it most likely will not be necessary to transfect LRAT into Expi293 cells. Furthermore, it is possible that the cells have an internal mechanism of hydrolyzing and esterifying xanthophylls for storage. When continuing this experiment, xanthophylls may be delivered in either free or esterified form without significant changes
    corecore