8 research outputs found

    Microdissection of Shoot Meristem Functional Domains

    Get PDF
    The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection–microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize

    Maize leaf angle genetic gain is slowing down in the last decades

    No full text
    Quantifying historical changes in maize leaf angle and factors affecting it can enhance our understanding of canopy architecture and light capture, and hence crop productivity. Our objectives were to (1) quantify leaf angle genetic gain per canopy position in Bayer's legacy maize (Zea mays L.) hybrids; (2) dissect the contribution of breeding from plant density on historical changes in leaf angle; and (3) synthesize our findings with literature to determine leaf angle changes over a century of breeding. We measured leaf angle in 78 maize hybrids released between 1980 and 2020 across eight environments in the US Corn Belt. We found that new hybrids had on average 6° more erect leaves than old hybrids. The leaf angle genetic gain (toward more erect leaves) was on average 0.08% year−1 for the middle canopy leaves and eightfold larger for the flag leaf. Our results revealed a synergistic effect with similar contributions of maize breeding and plant density on historical leaf angle changes in the middle canopy. However, changes in the bottom and top canopy leaves were due to breeding. Our results, combined with literature, revealed consistent trends toward more vertical leaves over a century of maize breeding, but the leaf angle genetic gain is slowing down in the last decades. This suggests that leaf angle may have reached near-optimum levels and that multiple ways to maintain the grain yield genetic gain have been functioning in maize breeding. Our study provides prospects to inform breeders and crop modelers to better understand maize leaf architecture and crop yields.This article is published as Elli, Elvis F., Jode Edwards, Jianming Yu, Slobodan Trifunovic, Douglas M. Eudy, Kevin R. Kosola, Patrick S. Schnable, Kendall R. Lamkey, and Sotirios V. Archontoulis. "Maize leaf angle genetic gain is slowing down in the last decades." Crop Science (2023). doi:10.1002/csc2.21111. © 2023 The Authors.This is an open access article under the terms of the Creative Commons AttributionCreative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    Microdissection of Shoot Meristem Functional Domains

    Get PDF
    The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection–microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize.This article is published as Brooks L III, Strable J, Zhang X, Ohtsu K, Zhou R, et al. (2009) Microdissection of Shoot Meristem Functional Domains. PLoS Genet 5(5): e1000476. doi: 10.1371/journal.pgen.1000476.</p

    The prevalence of gram-negative bacteria with difficult-to-treat resistance and utilization of novel β-lactam antibiotics in the southeastern United States

    No full text
    Abstract Objective: To evaluate temporal trends in the prevalence of gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) in the southeastern United States. Secondary objective was to examine the use of novel β-lactams for GNB with DTR by both antimicrobial use (AU) and a novel metric of adjusted AU by microbiological burden (am-AU). Design: Retrospective, multicenter, cohort. Setting: Ten hospitals in the southeastern United States. Methods: GNB with DTR including Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter spp. from 2015 to 2020 were tracked at each institution. Cumulative AU of novel β-lactams including ceftolozane/tazobactam, ceftazidime/avibactam, meropenem/vaborbactam, imipenem/cilastatin/relebactam, and cefiderocol in days of therapy (DOT) per 1,000 patient-days was calculated. Linear regression was utilized to examine temporal trends in the prevalence of GNB with DTR and cumulative AU of novel β-lactams. Results: The overall prevalence of GNB with DTR was 0.85% (1,223/143,638) with numerical increase from 0.77% to 1.00% between 2015 and 2020 (P = .06). There was a statistically significant increase in DTR Enterobacterales (0.11% to 0.28%, P = .023) and DTR Acinetobacter spp. (4.2% to 18.8%, P = .002). Cumulative AU of novel β-lactams was 1.91 ± 1.95 DOT per 1,000 patient-days. When comparing cumulative mean AU and am-AU, there was an increase from 1.91 to 2.36 DOT/1,000 patient-days, with more than half of the hospitals shifting in ranking after adjustment for microbiological burden. Conclusions: The overall prevalence of GNB with DTR and the use of novel β-lactams remain low. However, the uptrend in the use of novel β-lactams after adjusting for microbiological burden suggests a higher utilization relative to the prevalence of GNB with DTR
    corecore