31 research outputs found

    Virtual Sensors for Smart Data Generation and Processing in AI-Driven Industrial Applications

    Get PDF
    The current digitalisation revolution demonstrates the high importance and possibilities of quality data in industrial applications. Data represent the foundation of any analytical process, establishing the fundamentals of the modern Industry 4.0 era. Data-driven processes boosted by novel Artificial Intelligence (AI) provide powerful solutions for industrial applications in anomaly detection, predictive maintenance, optimal process control and digital twins, among many others. Virtual Sensors offer a digital definition of a real Internet of Things (IoT) sensor device, providing a smart tool capable to face key issues on the critical data generation side: i) Scalability of expensive measurement devices, ii) Robustness and resilience through real-time data validation and real-time sensor replacement for continuous service, or iii) Provision of key parameters’ estimation on difficult to measure situations. This chapter presents a profound introduction to Virtual Sensors, including the explanation of the methodology used in industrial data-driven projects, novel AI techniques for their implementation and real use cases in the Industry 4.0 context

    Fast 4D imaging of fluid flow in rock by high‐speed neutron tomography

    Get PDF
    High‐speed neutron tomographies (1‐min acquisition) have been acquired during water invasion into air‐filled samples of both intact and deformed (ex situ) Vosges sandstone. Three‐dimensional volume images have been processed to detect and track the evolution of the waterfront and to calculate full‐field measurement of its speed of advance. The flow process correlates well with known rock properties and is especially sensitive to the distribution of the altered properties associated with observed localized deformation, which is independently characterized by Digital Volume Correlation of X‐ray tomographies acquired before and after the mechanical test. The successful results presented herein open the possibility of in situ analysis of the local evolution of hydraulic properties of rocks due to mechanical deformation

    Neutron Position Sensitive Detectors for the ESS

    Full text link
    The European Spallation Source (ESS) in Lund, Sweden will become the world's leading neutron source for the study of materials. The instruments are being selected from conceptual proposals submitted by groups from around Europe. These instruments present numerous challenges for detector technology in the absence of the availability of Helium-3, which is the default choice for detectors for instruments built until today and due to the extreme rates expected across the ESS instrument suite. Additionally a new generation of source requires a new generation of detector technologies to fully exploit the opportunities that this source provides. The detectors will be sourced from partners across Europe through numerous in-kind arrangements; a process that is somewhat novel for the neutron scattering community. This contribution presents briefly the current status of detectors for the ESS, and outlines the timeline to completion. For a conjectured instrument suite based upon instruments recommended for construction, a recently updated snapshot of the current expected detector requirements is presented. A strategy outline as to how these requirements might be tackled by novel detector developments is shown. In terms of future developments for the neutron community, synergies should be sought with other disciples, as recognized by various recent initiatives in Europe, in the context of the fundamentally multi-disciplinary nature of detectors. This strategy has at its basis the in-kind and collaborative partnerships necessary to be able to produce optimally performant detectors that allow the ESS instruments to be world-leading. This foresees and encourages a high level of collaboration and interdependence at its core, and rather than each group being all-rounders in every technology, the further development of centres of excellence across Europe for particular technologies and niches.Comment: 8 pages, 1 figure. Proceedings from the 23rd International Workshop on Vertex Detectors, 15-19 September 2014, Macha Lake, The Czech Republic. PoS(Vertex2014)02

    Coupled hydro-­mechanics of reservoir rocks studied by quantitative in-situ neutron imaging

    No full text
    Le comportement des roches-rĂ©servoirs souterraines est un sujet important pour de nombreuses applications liĂ©es Ă  la production d’énergie (extraction d’hydrocarbures, sĂ©questration de CO2, ...). L'une des principales questions posĂ©es est celle de l'effet des dĂ©formations sur les propriĂ©tĂ©s de transfert hydraulique de la roche, en particulier en conditions saturĂ©es. En effet, la dĂ©formation des gĂ©omatĂ©riaux est rarement homogĂšne en raison de conditions aux limites complexes et de sa tendance intrinsĂšque Ă  se localiser. Cette non-uniformitĂ© spatiale de la dĂ©formation produit un champ de permĂ©abilitĂ© hĂ©tĂ©rogĂšne. Cela remet en question la validitĂ© (a) des mĂ©thodes traditionnelles d'analyse macroscopique et (b) des mesures Ă©tablies principalement loin des zones de dĂ©formation localisĂ©e. Ainsi, pour amĂ©liorer la caractĂ©risation des gĂ©o-matĂ©riaux, il est crucial d’avoir des mesures locales de la permĂ©abilitĂ©, et de connaĂźtre la relation entre la dĂ©formation et la permĂ©abilitĂ©, qui gouverne leur comportement hydraulique.Cette thĂšse porte sur l’étude du couplage hydromĂ©canique des roches par tomographie aux neutrons et aux rayons X, ainsi que sur le dĂ©veloppement de nouvelles mĂ©thodes d'analyse. MĂȘme si le recours Ă  l'imagerie par rayons X en gĂ©osciences devient de plus en plus accessible, la dĂ©tection directe des fluides a Ă©tĂ© trĂšs limitĂ©e en raison du faible contraste air/eau dans les gĂ©omatĂ©riaux. Contrairement aux rayons X, les neutrons sont trĂšs sensibles Ă  l’hydrogĂšne prĂ©sent dans l'eau. La radiographie par neutrons permet donc d'obtenir des images oĂč la dĂ©tection du fluide est bien plus facile. De plus, les neutrons sont sensibles aux isotopes, ce qui veut dire que l’eau lourde et celle normale, qui ont des propriĂ©tĂ©s physico-chimiques proches, peuvent ĂȘtre distinguĂ©es avec une grande prĂ©cision. Il faut noter que l’imagerie aux neutrons pour les roches est un domaine expĂ©rimental qui est essentiellement inexplorĂ©, ou limitĂ© Ă  des Ă©tudes 2D d'Ă©chantillons secs, avec peu ou pas de contrĂŽle sur les conditions aux limites.Dans le cadre de ce travail, nous avons conçu une nouvelle cellule triaxiale, avec un contrĂŽle asservi, pour effectuer des expĂ©riences d'Ă©coulement de fluides multiples dans un Ă©chantillon de roche saturĂ© et chargĂ© mĂ©caniquement avec acquisition des donnĂ©es neutroniques en 4D. Une autre originalitĂ© du projet est l'utilisation d'installations d'imagerie neutroniques Ă  haute performance (CONRAD-2 au Helmholtz Zentrum Ă  Berlin et NeXT Ă  l'Institut Laue-Langevin Ă  Grenoble), profitant de la technologie de pointe et des lignes de faisceaux les plus puissantes du monde. Cela a permis d'acquĂ©rir des donnĂ©es Ă  une frĂ©quence optimale pour notre Ă©tude.Ce travail prĂ©sente les rĂ©sultats de plusieurs campagnes expĂ©rimentales couvrant une sĂ©rie de conditions initiales et de conditions aux limites relativement complexes. Pour quantifier le couplage hydromĂ©canique local, nous avons appliquĂ© un certain nombre de procĂ©dures de post-traitement standard et nous avons Ă©galement dĂ©veloppĂ© un ensemble de mĂ©thodes de mesure, par exemple pour suivre le front d’eau et dĂ©terminer les cartes de vitesse 3D. Les rĂ©sultats montrent que la vitesse du front d’eau entraĂźnĂ© par imbibition dans un Ă©chantillon sec est augmentĂ©e Ă  l’intĂ©rieur d'une bande de cisaillement compactante, tandis que la vitesse d’écoulement entraĂźnĂ© par la pression est rĂ©duite dans les Ă©chantillons saturĂ©s, quelque soit la rĂ©ponse volumĂ©trique de la bande de cisaillement (compactante / dilatante). La nature des donnĂ©es 3D et des analyses s'est rĂ©vĂ©lĂ©e essentielle dans la caractĂ©risation du comportement mĂ©canique complexe des Ă©chantillons et de la vitesse d'Ă©coulement qui en rĂ©sulte.Les rĂ©sultats expĂ©rimentaux obtenus contribuent Ă  la comprĂ©hension de l'Ă©coulement dans les matĂ©riaux poreux sous chargement, garantissent la pertinence de l'analyse et permettent d’etablir une mĂ©thode expĂ©rimentale pour d'autres campagnes hydromĂ©caniques in-situ.The behaviour of subsurface-reservoir porous rocks is a central topic in resource engineering industry and has relevant applications for hydrocarbon and water production or CO2 sequestration. One of the key open issues is the effect of deformations on the hydraulic properties of the host rock, specifically in saturated environments. Deformation in geomaterials is rarely homogeneous because of the complex boundary conditions they undergo as well as for their intrinsic tendency to localise. This non uniformity of the deformation yields a non uniform permeability field, meaning that the traditional macroscopic analysis methods are outside their domain of validity. These methods are in fact based on measurements taken at the boundaries of a tested sample, under the assumption of internal homogeneity. At this stage, our understanding is in need of direct measurements of the local fluid permeability and its relationship with localiseddeformation.This doctoral dissertation focuses on the acquisition of such local data about the hydro mechanical properties of porous geomaterials in full-field, adopting neutron and x-ray tomography, as well as on the development of novel analysis methods. While x-ray imaging has been increasingly used in geo-sciences in the last few decades, the direct detection of fluid has been very limited because of the low air/water contrast within geomaterials. Unlike x-rays, neutrons are very sensitive to the hydrogen in the water because of their interaction with matter (neutrons interact with the atoms’ nuclei rather than with the external electron shell as x-rays do). This greater sensitivity to hydrogen provides a high contrast compared to the rock matrix, in neutron tomography images that facilitates the detection of hydrogen-rich fluids. Furthermore, neutrons are isotope-sensitive, meaning that water (H 2 0) and heavy water (D20), while chemically and hydraulically almost identical, can be easily distinguished in neutron imaging.The use of neutron imaging to investigate the hydromechanical properties of rocks is a substantially under-explored experimental area, mostly limited to 2D studies of dry, intact or pre-deformed samples, with little control of the boundary conditions. In thiswork we developed a new servocontrolled triaxial cell to perform multi-fluid flow experiments in saturated porous media, while performing in-situ loading and acquiring 4-dimensional neutron data.Another peculiarity of the project is the use of high-performance neutron imaging facilities (CONRAD-2, in Helmholtz Zentrum Berlin, and NeXT-Grenoble, in Institut Laue-Langevin), taking advantage of the world’s highest flux and cutting edge technology to acquire data at an optimal frequency for the study of this processes. The results of multiple experimental campaigns covering a series of initial and boundary conditions of increasing complexity are presented in this work.To quantify the local hydro-mechanical coupling, we applied a number of standard postprocessing procedures (reconstruction, denoising, Digital Volume Correlation) but also developed an array of bespoke methods, for example to track the water front andcalculate the 3D speed maps.The experimental campaigns performed show that the speed of the water front driven by imbibition in a dry sample is increased within a compactant shear band, while the pressure driven flow speed is decreased in saturated samples, regardless of the volumetric response of the shear band (compactant/dilatant). The 3D nature of the data and analyses has revealed essential in the characterization of the complex mechanical behaviour of the samples and the resultant flow speed.The experimental results obtained contribute to the understanding of flow in porous materials, ensure the suitability of the analysis and set an experimental method for further in-situ hydromechanical campaigns

    Etude du couplage hydromécanique dans les roches par analyse d'images obtenues par tomographie neutronique

    No full text
    The behaviour of subsurface-reservoir porous rocks is a central topic in resource engineering industry and has relevant applications for hydrocarbon and water production or CO2 sequestration. One of the key open issues is the effect of deformations on the hydraulic properties of the host rock, specifically in saturated environments. Deformation in geomaterials is rarely homogeneous because of the complex boundary conditions they undergo as well as for their intrinsic tendency to localise. This non uniformity of the deformation yields a non uniform permeability field, meaning that the traditional macroscopic analysis methods are outside their domain of validity. These methods are in fact based on measurements taken at the boundaries of a tested sample, under the assumption of internal homogeneity. At this stage, our understanding is in need of direct measurements of the local fluid permeability and its relationship with localiseddeformation.This doctoral dissertation focuses on the acquisition of such local data about the hydro mechanical properties of porous geomaterials in full-field, adopting neutron and x-ray tomography, as well as on the development of novel analysis methods. While x-ray imaging has been increasingly used in geo-sciences in the last few decades, the direct detection of fluid has been very limited because of the low air/water contrast within geomaterials. Unlike x-rays, neutrons are very sensitive to the hydrogen in the water because of their interaction with matter (neutrons interact with the atoms’ nuclei rather than with the external electron shell as x-rays do). This greater sensitivity to hydrogen provides a high contrast compared to the rock matrix, in neutron tomography images that facilitates the detection of hydrogen-rich fluids. Furthermore, neutrons are isotope-sensitive, meaning that water (H 2 0) and heavy water (D20), while chemically and hydraulically almost identical, can be easily distinguished in neutron imaging.The use of neutron imaging to investigate the hydromechanical properties of rocks is a substantially under-explored experimental area, mostly limited to 2D studies of dry, intact or pre-deformed samples, with little control of the boundary conditions. In thiswork we developed a new servocontrolled triaxial cell to perform multi-fluid flow experiments in saturated porous media, while performing in-situ loading and acquiring 4-dimensional neutron data.Another peculiarity of the project is the use of high-performance neutron imaging facilities (CONRAD-2, in Helmholtz Zentrum Berlin, and NeXT-Grenoble, in Institut Laue-Langevin), taking advantage of the world’s highest flux and cutting edge technology to acquire data at an optimal frequency for the study of this processes. The results of multiple experimental campaigns covering a series of initial and boundary conditions of increasing complexity are presented in this work.To quantify the local hydro-mechanical coupling, we applied a number of standard postprocessing procedures (reconstruction, denoising, Digital Volume Correlation) but also developed an array of bespoke methods, for example to track the water front andcalculate the 3D speed maps.The experimental campaigns performed show that the speed of the water front driven by imbibition in a dry sample is increased within a compactant shear band, while the pressure driven flow speed is decreased in saturated samples, regardless of the volumetric response of the shear band (compactant/dilatant). The 3D nature of the data and analyses has revealed essential in the characterization of the complex mechanical behaviour of the samples and the resultant flow speed.The experimental results obtained contribute to the understanding of flow in porous materials, ensure the suitability of the analysis and set an experimental method for further in-situ hydromechanical campaigns.Le comportement des roches-rĂ©servoirs souterraines est un sujet important pour de nombreuses applications liĂ©es Ă  la production d’énergie (extraction d’hydrocarbures, sĂ©questration de CO2, ...). L'une des principales questions posĂ©es est celle de l'effet des dĂ©formations sur les propriĂ©tĂ©s de transfert hydraulique de la roche, en particulier en conditions saturĂ©es. En effet, la dĂ©formation des gĂ©omatĂ©riaux est rarement homogĂšne en raison de conditions aux limites complexes et de sa tendance intrinsĂšque Ă  se localiser. Cette non-uniformitĂ© spatiale de la dĂ©formation produit un champ de permĂ©abilitĂ© hĂ©tĂ©rogĂšne. Cela remet en question la validitĂ© (a) des mĂ©thodes traditionnelles d'analyse macroscopique et (b) des mesures Ă©tablies principalement loin des zones de dĂ©formation localisĂ©e. Ainsi, pour amĂ©liorer la caractĂ©risation des gĂ©o-matĂ©riaux, il est crucial d’avoir des mesures locales de la permĂ©abilitĂ©, et de connaĂźtre la relation entre la dĂ©formation et la permĂ©abilitĂ©, qui gouverne leur comportement hydraulique.Cette thĂšse porte sur l’étude du couplage hydromĂ©canique des roches par tomographie aux neutrons et aux rayons X, ainsi que sur le dĂ©veloppement de nouvelles mĂ©thodes d'analyse. MĂȘme si le recours Ă  l'imagerie par rayons X en gĂ©osciences devient de plus en plus accessible, la dĂ©tection directe des fluides a Ă©tĂ© trĂšs limitĂ©e en raison du faible contraste air/eau dans les gĂ©omatĂ©riaux. Contrairement aux rayons X, les neutrons sont trĂšs sensibles Ă  l’hydrogĂšne prĂ©sent dans l'eau. La radiographie par neutrons permet donc d'obtenir des images oĂč la dĂ©tection du fluide est bien plus facile. De plus, les neutrons sont sensibles aux isotopes, ce qui veut dire que l’eau lourde et celle normale, qui ont des propriĂ©tĂ©s physico-chimiques proches, peuvent ĂȘtre distinguĂ©es avec une grande prĂ©cision. Il faut noter que l’imagerie aux neutrons pour les roches est un domaine expĂ©rimental qui est essentiellement inexplorĂ©, ou limitĂ© Ă  des Ă©tudes 2D d'Ă©chantillons secs, avec peu ou pas de contrĂŽle sur les conditions aux limites.Dans le cadre de ce travail, nous avons conçu une nouvelle cellule triaxiale, avec un contrĂŽle asservi, pour effectuer des expĂ©riences d'Ă©coulement de fluides multiples dans un Ă©chantillon de roche saturĂ© et chargĂ© mĂ©caniquement avec acquisition des donnĂ©es neutroniques en 4D. Une autre originalitĂ© du projet est l'utilisation d'installations d'imagerie neutroniques Ă  haute performance (CONRAD-2 au Helmholtz Zentrum Ă  Berlin et NeXT Ă  l'Institut Laue-Langevin Ă  Grenoble), profitant de la technologie de pointe et des lignes de faisceaux les plus puissantes du monde. Cela a permis d'acquĂ©rir des donnĂ©es Ă  une frĂ©quence optimale pour notre Ă©tude.Ce travail prĂ©sente les rĂ©sultats de plusieurs campagnes expĂ©rimentales couvrant une sĂ©rie de conditions initiales et de conditions aux limites relativement complexes. Pour quantifier le couplage hydromĂ©canique local, nous avons appliquĂ© un certain nombre de procĂ©dures de post-traitement standard et nous avons Ă©galement dĂ©veloppĂ© un ensemble de mĂ©thodes de mesure, par exemple pour suivre le front d’eau et dĂ©terminer les cartes de vitesse 3D. Les rĂ©sultats montrent que la vitesse du front d’eau entraĂźnĂ© par imbibition dans un Ă©chantillon sec est augmentĂ©e Ă  l’intĂ©rieur d'une bande de cisaillement compactante, tandis que la vitesse d’écoulement entraĂźnĂ© par la pression est rĂ©duite dans les Ă©chantillons saturĂ©s, quelque soit la rĂ©ponse volumĂ©trique de la bande de cisaillement (compactante / dilatante). La nature des donnĂ©es 3D et des analyses s'est rĂ©vĂ©lĂ©e essentielle dans la caractĂ©risation du comportement mĂ©canique complexe des Ă©chantillons et de la vitesse d'Ă©coulement qui en rĂ©sulte.Les rĂ©sultats expĂ©rimentaux obtenus contribuent Ă  la comprĂ©hension de l'Ă©coulement dans les matĂ©riaux poreux sous chargement, garantissent la pertinence de l'analyse et permettent d’etablir une mĂ©thode expĂ©rimentale pour d'autres campagnes hydromĂ©caniques in-situ

    Fast Tracking of Fluid Invasion Using Time-Resolved Neutron Tomography

    No full text
    International audienceWater flow in a sandstone sample is studied during an experiment in-situ in a neutron tomography setup. In this paper, a projection-based methodology for fast tracking of the imbibition front in 3D is presented. The procedure exploits each individual neutron 2D radiograph, instead of the tomographic-reconstructed images, to identify the 4D (space and time) saturation field, offering a much higher time resolution than more standard reconstruction based methods. Based on strong space and time regularizations of the fluid flow, with an a pri-ori defined space and time shape functions, the front shape is identified at each projection time step. This procedure aiming at a fast tracking the fluid advance is explored through two examples. The first one shows that the fluid motion that occurs during one single 180° scan can be resolved at 5 Hz with a sub-pixel accuracy whereas it cannot be unraveled with plain tomographic reconstruction. The second example is composed of 42 radiographs acquired all along a complete fluid invasion in the sample. This experiment uses the very same approach with the additional difficulty of large fluid displacement in between two projections. As compared to the classical approach based on full reconstructions at each invasion stage, the proposed methodology in the studied examples is roughly 300 times faster offering an enhanced time resolution
    corecore