1,759 research outputs found

    Magnetic-Field-Driven Director Configuration Transitions In Radial Nematic Liquid Crystal Droplets

    Get PDF
    We study the director configurations of nematic liquid crystal (NLC) droplets with homeotropic anchoring in a magnetic field and report observation of a magnetic-field-driven transition from a deformed radial to an axial-with-defect configuration. Magnetic-field-induced transitions in NLC droplets differ fundamentally from the traditional planar Freedericksz transition due to the spherical droplet geometry and resulting topological defect. This transition has been studied theoretically, but the director configurations and mechanism of defect evolution in an applied magnetic field have yet to be observed experimentally. To this end, we combine polarized optical microscopy with a variable electromagnet (≤ 1 T) for continuous observation of droplet director fields, and we employ Landau–de Gennes numerical simulations to elucidate the director configurations and first-order nature of the transition. We report a configuration transition from point defect to ring defect at a critical field, which varies inversely with droplet radius and is relatively independent of surfactant type and concentration. We also estimate anchoring strengths of commonly used surfactants at the NLC-aqueous interface

    Theory Of Director Fluctuations About A Hedgehog Defect In A Nematic Drop

    Get PDF
    We present calculations of eigenmode energies and wave functions of both azimuthal and polar distortions of the nematic director relative to a radial hedgehog trapped in a spherical drop with a smaller concentric spherical droplet at its core. All surfaces interior to the drop have perpendicular (homeotropic) boundary conditions. We also calculate director correlation functions and their relaxation times. Of particular interest is a critical mode whose energy, with fixed Frank constants, vanishes as the ratio μ = R₂/R₁ increases toward a critical value μc, where R₂ is the radius of the drop and R₁ that of the inner droplet, and then becomes negative for μ \u3e μc. Our calculations form a basis for interpreting experimental measurements of director fluctuations relative to a radial hedgehog state in a spherical drop. We compare results with those obtained by previous investigations, which use a calculational approach different from ours, and with our experimental observations

    FGF4 retrogene on CFA12 is responsible for chondrodystrophy and intervertebral disc disease in dogs.

    Get PDF
    Chondrodystrophy in dogs is defined by dysplastic, shortened long bones and premature degeneration and calcification of intervertebral discs. Independent genome-wide association analyses for skeletal dysplasia (short limbs) within a single breed (PBonferroni = 0.01) and intervertebral disc disease (IVDD) across breeds (PBonferroni = 4.0 × 10-10) both identified a significant association to the same region on CFA12. Whole genome sequencing identified a highly expressed FGF4 retrogene within this shared region. The FGF4 retrogene segregated with limb length and had an odds ratio of 51.23 (95% CI = 46.69, 56.20) for IVDD. Long bone length in dogs is a unique example of multiple disease-causing retrocopies of the same parental gene in a mammalian species. FGF signaling abnormalities have been associated with skeletal dysplasia in humans, and our findings present opportunities for both selective elimination of a medically and financially devastating disease in dogs and further understanding of the ever-growing complexity of retrogene biology

    Giant Director Fluctuations In Liquid Crystal Drops

    Get PDF
    We report the discovery and elucidation of giant spatiotemporal orientational fluctuations in nematic liquid crystal drops with radial orientation of the nematic anisotropy axis producing a central “hedgehog” defect. We study the spatial and temporal properties of the fluctuations experimentally using polarized optical microscopy, and theoretically, by calculating the eigenspectrum of the Frank elastic free energy of a nematic drop of radius R₂, containing a spherical central core of radius R₁ and constrained by perpendicular boundary conditions on all surfaces. We find that the hedgehog defect with radial orientation has a complex excitation spectrum with a single critical mode whose energy vanishes at a critical value μc of the ratio μ = R₂/R₁. When μ \u3c μc, the mode has positive energy, indicating that the radial hedgehog state is stable; when μ \u3e μc, it has negative energy indicating that the radial state is unstable to the formation of a lower-energy state. This mode gives rise to the large-amplitude director fluctuations we observe near the core, for μ near μc. A collapse of the experimental data corroborates model predictions for μ \u3c μc and provides an estimate of the defect core size

    Thromboembolic Events Associated with Thalidomide and Multimodality Therapy for Soft Tissue Sarcomas: Results of RTOG 0330

    Get PDF
    Introduction. RTOG 0330 was developed to address the toxicity of RTOG 9514 and to add thalidomide (THAL) to MAID chemoradiation for intermediate/high grade soft tissue sarcomas (STSs) and to preoperative radiation (XRT) for low-grade STS. Methods. Primary/locally recurrent extremity/trunk STS: ≥8 cm, intermediate/high grade (cohort A): >5 cm, low grade (cohort B). Cohort A: 3 cycles of neoadjuvant MAID, 2 cycles of interdigitated THAL (200 mg/day)/concurrent 22 Gy XRT, resection, 12 months of adjuvant THAL. Cohort B: neoadjuvant THAL/concurrent 50 Gy XRT, resection, 6 months of adjuvant THAL. Planned accrual 44 patients. Results. 22 primary STS patients (cohort A/B 15/7). Cohort A/B: median age of 49/47 years; median tumor size 12.8/10 cm. 100% preoperative THAL/XRT and surgical resection. Three cycles of MAID were delivered in 93% cohort A. Positive margins: 27% cohort A/29% cohort B. Adjuvant THAL: 60% cohort A/57% cohort B. Grade 3/4 venous thromboembolic (VTE) events: 40% cohort A (1 catheter thrombus and 5 DVT or PE) versus 0% cohort B. RTOG 0330 closed early due to cohort A VTE risk and cohort B poor accrual. Conclusion. Neoadjuvant MAID with THAL/XRT was associated with increased VTE events not seen with THAL/XRT alone or in RTOG 9514 with neoadjuvant MAID/XRT

    The antisaccade task as an index of sustained goal activation in working memory: modulation by nicotine

    Get PDF
    The antisaccade task provides a laboratory analogue of situations in which execution of the correct behavioural response requires the suppression of a more prepotent or habitual response. Errors (failures to inhibit a reflexive prosaccade towards a sudden onset target) are significantly increased in patients with damage to the dorsolateral prefrontal cortex and patients with schizophrenia. Recent models of antisaccade performance suggest that errors are more likely to occur when the intention to initiate an antisaccade is insufficiently activated within working memory. Nicotine has been shown to enhance specific working memory processes in healthy adults. MATERIALS AND METHODS: We explored the effect of nicotine on antisaccade performance in a large sample (N = 44) of young adult smokers. Minimally abstinent participants attended two test sessions and were asked to smoke one of their own cigarettes between baseline and retest during one session only. RESULTS AND CONCLUSION: Nicotine reduced antisaccade errors and correct antisaccade latencies if delivered before optimum performance levels are achieved, suggesting that nicotine supports the activation of intentions in working memory during task performance. The implications of this research for current theoretical accounts of antisaccade performance, and for interpreting the increased rate of antisaccade errors found in some psychiatric patient groups are discussed

    Computational Indistinguishability between Quantum States and Its Cryptographic Application

    Full text link
    We introduce a computational problem of distinguishing between two specific quantum states as a new cryptographic problem to design a quantum cryptographic scheme that is "secure" against any polynomial-time quantum adversary. Our problem, QSCDff, is to distinguish between two types of random coset states with a hidden permutation over the symmetric group of finite degree. This naturally generalizes the commonly-used distinction problem between two probability distributions in computational cryptography. As our major contribution, we show that QSCDff has three properties of cryptographic interest: (i) QSCDff has a trapdoor; (ii) the average-case hardness of QSCDff coincides with its worst-case hardness; and (iii) QSCDff is computationally at least as hard as the graph automorphism problem in the worst case. These cryptographic properties enable us to construct a quantum public-key cryptosystem, which is likely to withstand any chosen plaintext attack of a polynomial-time quantum adversary. We further discuss a generalization of QSCDff, called QSCDcyc, and introduce a multi-bit encryption scheme that relies on similar cryptographic properties of QSCDcyc.Comment: 24 pages, 2 figures. We improved presentation, and added more detail proofs and follow-up of recent wor

    Musical components important for the Mozart K448 effect in epilepsy

    Get PDF
    There is growing evidence for the efficacy of music, specifically Mozart’s Sonata for Two Pianos in D Major (K448), at reducing ictal and interictal epileptiform activity. Nonetheless, little is known about the mechanism underlying this beneficial “Mozart K448 effect” for persons with epilepsy. Here, we measured the influence that K448 had on intracranial interictal epileptiform discharges (IEDs) in sixteen subjects undergoing intracranial monitoring for refractory focal epilepsy. We found reduced IEDs during the original version of K448 after at least 30-s of exposure. Nonsignificant IED rate reductions were witnessed in all brain regions apart from the bilateral frontal cortices, where we observed increased frontal theta power during transitions from prolonged musical segments. All other presented musical stimuli were associated with nonsignificant IED alterations. These results suggest that the “Mozart K448 effect” is dependent on the duration of exposure and may preferentially modulate activity in frontal emotional networks, providing insight into the mechanism underlying this response. Our findings encourage the continued evaluation of Mozart’s K448 as a noninvasive, non-pharmacological intervention for refractory epilepsy
    corecore