14 research outputs found

    General estimates of the energy cost of walking in people with different levels and causes of lower-limb amputation:a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Energy cost of walking (ECw) is an important determinant of walking ability in people with a lower-limb amputation. Large variety in estimates of ECw has been reported, likely because of the heterogeneity of this population in terms of level and cause of amputation and walking speed. OBJECTIVES: To assess (1) differences in ECw between people with and without a lower-limb amputation, and between people with different levels and causes of amputation, and (2) the association between ECw and walking speed. STUDY DESIGN: Systematic review and meta-analysis. METHODS: We included studies that compared ECw in people with and without a lower-limb amputation. A meta-analysis was done to compare ECw between both groups, and between different levels and causes of amputation. A second analysis investigated the association between self-selected walking speed and ECw in people with an amputation. RESULTS: Out of 526 identified articles, 25 were included in the meta-analysis and an additional 30 in the walking speed analysis. Overall, people with a lower-limb amputation have significantly higher ECw compared to people without an amputation. People with vascular transfemoral amputations showed the greatest difference (+102%) in ECw. The smallest difference (+12%) was found for people with nonvascular transtibial amputations. Slower self-selected walking speed was associated with substantial increases in ECw. CONCLUSION: This study provides general estimates on the ECw in people with a lower-limb amputation, quantifying the differences as a function of level and cause of amputation, as well as the relationship with walking speed

    FindMyApps eHealth intervention improves quality, not quantity, of home tablet use by people with dementia

    Get PDF
    IntroductionFindMyApps is a tablet-based eHealth intervention, designed to improve social health in people with mild dementia or mild cognitive impairment.MethodsFindMyApps has been subject to a randomized controlled trial (RCT), Netherlands Trial Register NL8157. Following UK Medical Research Council guidance, a mixed methods process evaluation was conducted. The goal was to investigate the quantity and quality of tablet use during the RCT, and which context, implementation, and mechanisms of impact (usability, learnability and adoption) factors might have influenced this. For the RCT, 150 community dwelling people with dementia and their caregivers were recruited in the Netherlands. For the process evaluation, tablet-use data were collected by proxy-report instrument from all participants' caregivers, FindMyApps app-use data were registered using analytics software among all experimental arm participants, and semi-structured interviews (SSIs) were conducted with a purposively selected sample of participant-caregiver dyads. Quantitative data were summarized and between group differences were analyzed, and qualitative data underwent thematic analysis.ResultsThere was a trend for experimental arm participants to download more apps, but there were no statistically significant differences between experimental and control arm participants regarding quantity of tablet use. Qualitative data revealed that experimental arm participants experienced the intervention as easier to use and learn, and more useful and fun than control arm participants. Adoption of tablet app use was lower than anticipated in both arms.ConclusionsA number of context, implementation and mechanism of impact factors were identified, which might explain these results and may inform interpretation of the pending RCT main effect results. FindMyApps seems to have had more impact on the quality than quantity of home tablet use

    Critical Hours and Important Environments:Relationships between Afterschool Physical Activity and the Physical Environment Using GPS, GIS and Accelerometers in 10-12-Year-Old Children

    No full text
    Introduction: The objective of this study was to assess relationships between children’s physical environment and afterschool leisure time physical activity (PA) and active transport. Methods: Children aged 10–12 years participated in a 7-day accelerometer and Global Positioning Systems (GPS) protocol. Afterschool leisure time PA and active transport were identified based on location-and speed-algorithms based on accelerometer, GPS and Geospatial Information Systems (GIS) data. We operationalized children’s exposure to the environment by combining home, school and the daily transport environment in individualized daily activity-spaces. Results: In total, 255 children from 20 Dutch primary schools from suburban areas provided valid data. This study showed that greenspaces and smaller distances from the children’s home to school were associated with afterschool leisure time PA and walking. Greater distances between home and school, as well as pedestrian infrastructure were associated with increased cycling. Conclusion: We demonstrated associations between environments and afterschool PA within several behavioral contexts. Future studies are encouraged to target specific behavioral domains and to develop natural experiments based on interactions between several types of the environment, child characteristics and potential socio-cognitive processes

    The effect of prolonged walking on muscle fatigue and neuromuscular control in children with cerebral palsy

    No full text
    Background: Muscle fatigue of the lower limbs is considered a main contributor to the perceived fatigue in children with cerebral palsy (CP) and is expected to occur during prolonged walking. In adults without disabilities, muscle fatigue has been proposed to be associated with adaptations in complexity of neuromuscular control. Research question: What are the effects of prolonged walking on signs of muscle fatigue and complexity of neuromuscular control in children with CP? Methods: Ten children with CP and fifteen typically developing (TD) children performed a standardised protocol on an instrumented treadmill consisting of three stages: six-minutes walking at preferred speed (6 MW), moderate-intensity walking (MIW, with two minutes at heart rate > 70% of predicted maximal heart rate) and four-minutes walking at preferred speed (post-MIW). Electromyography (EMG) data were analysed for eight muscles of one leg during three time periods: 6 MW-start, 6 MW-end and post-MIW. Signs of muscle fatigue were quantified as changes in EMG median frequency and EMG root mean square (RMS). Complexity of neuromuscular control was quantified by total variance accounted for by one synergy (tVAF1). Muscle coactivation was assessed for antagonistic muscle pairs. Results: EMG median frequency was decreased at 6 MW-end and post-MIW compared to 6 MW-start in children with CP (p < 0.05), but not in TD children. In both groups, EMG-RMS (p < 0.01) and muscle coactivation (p < 0.01) were decreased at 6 MW-end and post-MIW compared to 6 MW-start. tVAF1 decreased slightly at 6 MW-end and post-MIW compared to 6 MW-start in both groups (p < 0.05). Changes were most pronounced from 6 MW-start to 6 MW-end. Significance: Children with CP presented signs of muscle fatigue after prolonged walking, while no effects were found for TD. Both groups showed minimal changes in tVAF1, suggesting signs of muscle fatigue are not associated with changes in complexity of neuromuscular control

    Investigating longitudinal context-specific physical activity patterns in transition from primary to secondary school using accelerometers, GPS, and GIS

    No full text
    Introduction: Previous longitudinal studies indicate that physical activity (PA) significantly declines from primary-to secondary school, and report both changes in individual and environmental determinants of PA. In order to understand this transition and to prevent this negative trend, it is important to gather contextually rich data on possible mechanisms that drive this decline. Therefore, the aim of this study was to investigate changes of PA patterns in transition between primary and secondary school, and to add domain-specific insights of how, where, and when these changes occur. Methods: In total, 175 children participated in a 7-day accelerometer- and Global Positioning System (GPS) protocol at their last year of primary and their first year of secondary school. GPS data-points were overlaid with Geographical Information Systems (GIS) data using ArcGIS 10.1 software. Based on the GPS locations of individual data-points, we identified child’s PA at home, school, local sports grounds, shopping centers, and other locations. Also, trips in active and passive transport were identified according to previously validated GPS speed-algorithms. Longitudinal multi-level linear mixed models were fitted adjusting for age, gender, meteorological circumstances, and the nested structure of days within children and children within schools. Outcome measures were minutes spent in light PA and moderate-to-vigorous PA, specified for the time-segments before school, during school, after school and weekend days. Results: Total PA significantly declined from primary to secondary school. Although transport-related PA increased before- and during school, decreases were found for especially afterschool time spent at sports grounds and transport-related PA during weekends

    Fatigue-related gait adaptations in children with cerebral palsy

    No full text
    AIM: To obtain insights into the effects of fatigue on the kinematics, kinetics, and energy cost of walking (ECoW) in children with cerebral palsy (CP). METHOD: In this prospective observational study, 12 children with CP (mean age 12 years 9 months, SD 2 years 7 months; four females, eight males) and 15 typically developing children (mean age 10 years 8 months, SD 2 years 4 months; seven females, eight males) followed a prolonged intensity-based walking protocol on an instrumented treadmill, combined with gas analysis measurements. The protocol consisted of consecutive stages, including a 6-minute walking exercise (6MW) at comfortable speed, 2 minutes of moderate-intensity walking (MIW) (with a heart rate > 70% of its predicted maximal), and 4 minutes walking after MIW. If necessary, the speed and slope were incremented to reach MIW. Outcomes were evaluated at the beginning and end of the 6MW and after MIW. RESULTS: With prolonged walking, Gait Profile Scores deteriorated slightly for both groups (p < 0.01). Knee flexion increased during early stance (p = 0.004) and ankle dorsiflexion increased during late stance (p = 0.034) in children with CP only. Negligible effects were found for kinetics. No demonstrable change in ECoW was found in either group (p = 0.195). INTERPRETATION: Kinematic deviations in children with CP are progressive with prolonged walking. The large variation in adaptations indicates that an individual approach is recommended to investigate the effects of physical fatigue on gait in clinical practice
    corecore