80 research outputs found

    Light bullets in quadratic media with normal dispersion at the second harmonic

    Full text link
    Stable two- and three-dimensional spatiotemporal solitons (STSs) in second-harmonic-generating media are found in the case of normal dispersion at the second harmonic (SH). This result, surprising from the theoretical viewpoint, opens a way for experimental realization of STSs. An analytical estimate for the existence of STSs is derived, and full results, including a complete stability diagram, are obtained in a numerical form. STSs withstand not only the normal SH dispersion, but also finite walk-off between the harmonics, and readily self-trap from a Gaussian pulse launched at the fundamental frequency.Comment: 4 pages, 5 figures, accepted to Phys. Rev. Let

    Spatiotemporal discrete multicolor solitons

    Full text link
    We have found various families of two-dimensional spatiotemporal solitons in quadratically nonlinear waveguide arrays. The families of unstaggered odd, even and twisted stationary solutions are thoroughly characterized and their stability against perturbations is investigated. We show that the twisted and even solutions display instability, while most of the odd solitons show remarkable stability upon evolution.Comment: 18 pages,7 figures. To appear in Physical Review

    Interaction of pulses in nonlinear Schroedinger model

    Full text link
    The interaction of two rectangular pulses in nonlinear Schroedinger model is studied by solving the appropriate Zakharov-Shabat system. It is shown that two real pulses may result in appearance of moving solitons. Different limiting cases, such as a single pulse with a phase jump, a single chirped pulse, in-phase and out-of-phase pulses, and pulses with frequency separation, are analyzed. The thresholds of creation of new solitons and multi-soliton states are found.Comment: 9 pages, 7 figures. Accepted to Phys. Rev. E, 200

    Criteria for the experimental observation of multi-dimensional optical solitons in saturable media

    Full text link
    Criteria for experimental observation of multi-dimensional optical solitons in media with saturable refractive nonlinearities are developed. The criteria are applied to actual material parameters (characterizing the cubic self-focusing and quintic self-defocusing nonlinearities, two-photon loss, and optical-damage threshold) for various glasses. This way, we identify operation windows for soliton formation in these glasses. It is found that two-photon absorption sets stringent limits on the windows. We conclude that, while a well-defined window of parameters exists for two-dimensional solitons (spatial or spatiotemporal), for their three-dimensional spatiotemporal counterparts such a window \emph{does not} exist, due to the nonlinear loss in glasses.Comment: 8 pages, to appear in Phys. Rev.

    Quasicrystal metamaterials: A route to optical isotropy

    Get PDF
    We introduce a novel class of metamaterials with quasicrystalline meta-atom arrangements and study their properties in comparison with periodic and disordered metamaterials. We show that quasicrystalline metamaterials exhibit isotropic optical propertie

    Optical metamaterials with quasicrystalline symmetry: Symmetry-induced optical isotropy

    Get PDF
    We apply the concept of quasicrystals to metamaterials and experimentally demonstrate metasurfaces with isotropic properties and high resonance strength. By comparing quasicrystalline, periodic, and amorphous metasurfaces we quantify the impact of symmet

    Nonclassical statistics of intracavity coupled χ(2)\chi^{(2)} waveguides: the quantum optical dimer

    Get PDF
    A model is proposed where two χ(2)\chi^{(2)} nonlinear waveguides are contained in a cavity suited for second-harmonic generation. The evanescent wave coupling between the waveguides is considered as weak, and the interplay between this coupling and the nonlinear interaction within the waveguides gives rise to quantum violations of the classical limit. These violations are particularly strong when two instabilities are competing, where twin-beam behavior is found as almost complete noise suppression in the difference of the fundamental intensities. Moreover, close to bistable transitions perfect twin-beam correlations are seen in the sum of the fundamental intensities, and also the self-pulsing instability as well as the transition from symmetric to asymmetric states display nonclassical twin-beam correlations of both fundamental and second-harmonic intensities. The results are based on the full quantum Langevin equations derived from the Hamiltonian and including cavity damping effects. The intensity correlations of the output fields are calculated semi-analytically using a linearized version of the Langevin equations derived through the positive-P representation. Confirmation of the analytical results are obtained by numerical simulations of the nonlinear Langevin equations derived using the truncated Wigner representation.Comment: 15 pages, 8 figures, submitted to Phys. Rev.

    Three-Wave Modulational Stability and Dark Solitons in a Quadratic Nonlinear Waveguide with Grating

    Full text link
    We consider continuous-wave (CW) states and dark solitons (DSs) in a system of two fundamental-frequency (FF) and one second-harmonic (SH) waves in a planar waveguide with the quadratic nonlinearity, the FF components being linearly coupled by resonant reflections on the Bragg grating. We demonstrate that, in contrast with the usual situation in quadratic spatial-domain models, CW states with the phase shift between the FF and SH components are modulationally stable in a broad parameter region in this system, provided that the CW wavenumber does not belong to the system's spectral gap. Stationary fundamental DSs are found numerically, and are also constructed by means of a specially devised analytical approximation. Bound states of two and three DSs are found too. The fundamental DSs and two-solitons bound states are stable in all the cases when the CW background is stable, which is shown by dint of calculation of the corresponding eigenvalues, and verified in direct simulations. Tilted DSs are found too. They attain a maximum contrast at a finite value of the tilt, that does not depend on the phase mismatch. At a maximum value of the tilt, which grows with the mismatch, the DS merges into the CW background. Interactions between the tilted solitons are shown to be completely elastic.Comment: 10 pages, 12 figures; Journal of Optics A, in pres

    Discrete embedded solitons

    Get PDF
    We address the existence and properties of discrete embedded solitons (ESs), i.e., localized waves existing inside the phonon band in a nonlinear dynamical-lattice model. The model describes a one-dimensional array of optical waveguides with both the quadratic (second-harmonic generation) and cubic nonlinearities. A rich family of ESs was previously known in the continuum limit of the model. First, a simple motivating problem is considered, in which the cubic nonlinearity acts in a single waveguide. An explicit solution is constructed asymptotically in the large-wavenumber limit. The general problem is then shown to be equivalent to the existence of a homoclinic orbit in a four-dimensional reversible map. From properties of such maps, it is shown that (unlike ordinary gap solitons), discrete ESs have the same codimension as their continuum counterparts. A specific numerical method is developed to compute homoclinic solutions of the map, that are symmetric under a specific reversing transformation. Existence is then studied in the full parameter space of the problem. Numerical results agree with the asymptotic results in the appropriate limit and suggest that the discrete ESs may be semi-stable as in the continuous case.Comment: A revtex4 text file and 51 eps figure files. To appear in Nonlinearit
    • 

    corecore