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Nonclassical statistics of intracavity coupledy® waveguides: The quantum optical dimer
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2Optics and Fluid Dynamics Department, RiSational Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark
(Received 6 May 2002; published 4 April 2003

A model is proposed where twe® nonlinear waveguides are contained in a cavity suited for second-
harmonic generation. The evanescent wave coupling between the waveguides is considered as weak, and the
interplay between this coupling and the nonlinear interaction within the waveguides gives rise to quantum
violations of the standard quantum limit. Pronounced twin-beam behavior is observed as almost complete noise
suppression in the difference as well as the sum of the waveguide intensities close to bistable transitions,
self-pulsing instabilities as well as the transition from symmetric to asymmetric states. The correlations imply
strong correlations and anticorrelations induced by the coupling. The violations of the standard quantum limit
are particularly strong when two instabilities are competing. The results are based on the full quantum Lange-
vin equations derived from the boson operator Hamiltonian and including cavity damping effects. The intensity
correlations of the output fields are calculated semianalytically using a linearized version of the Langevin
equations derived through the positiPerepresentation. Confirmation of the analytical results are obtained by
numerical simulations of the nonlinear Langevin equations derived using the truncated Wigner representation.
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[. INTRODUCTION to a self-pulsing instability 12], and nonclassical effects in
SHG have been verified experimentall\t4], and even
The x® nonlinear materials have been the subject ofshown to persist above the threshold of the instabjlity].
various investigations in recent years. Using a cavity setupg\lso in the presence of diffraction strong correlations exist
the weak nonlinearities can be resonantly amplified, andbetween different spatial modes in the presence of a spatial
complex spatiotemporal behavior has been observed from iastability [18], including strong correlations between the
classical point of view, both theoreticallf—5] and recently = fundamental field and the generated second-harmonic field as
also experimentallyf6—8]. Moreover, due to the quantum well as spatial multimode nonclassical light.
fluctuations of light many interesting nonclassical effects As we shall show the quantum optical dimer also displays
have been reported, such as squeezed lightand sub- strong nonclassical intensity correlations, and that the linear
Poissonian lighf10], both theoreticallyf11,12 and experi- coupling across the waveguides plays a decisive role. The
mentally[13,14]. The interplay between the classical spatialmodel has three types of instabilities, namely self-pulsing,
instabilities and the quantum fluctuations in the system habistability and a transition from symmetric to asymmetric
been investigated intensively latelg5], a study devoted to states. It is remarkable that particularly strong nonclassical
characterizing the mode interaction on the quantum level. correlations are observed when two of these instabilities
We consider the case of second-harmonic generationompete. Specifically, when taken close to a self-pulsing or
(SHG), where the photons of the pump fie{fflindamental bistable regime the symmetric to asymmetric transition has
photong are up-converted in pairs to second-harmonic phonearly perfectwin-beambehavior, so the difference of the
tons of the double frequency. The model we propose in thifundamental intensities displays almost no fluctuations. The
paper consists of two quadratically nonlinear waveguideswin-beam correlations were first shown in the optical para-
placed in a cavity that resonates both the fundamental anehetric oscillator(OPO [19,20, where the signal and idler
second harmonic, and we take linear coupling between thphotons of the twin-fields are generated simultaneously from
waveguides into account. This is the simplest mode couplinghe pump field, and the intensity difference shows correla-
model obtainable. The question is how the coupling betweetions below the standard quantum limit. However, the twin-
the waveguides affects the cavity dynamics, and in particulabeam effect observed in the dimer originates from photons
we shall focus on the nonclassical behavior of the system. created in different waveguides with only the coupling to
The name proposed for this model, the quantum opticalink them. Thus, the photons are strictly speaking not twins,
dimer, originates from the numerous investigations madédut merely “brothers.” The twin-beam effect is also ob-
about discrete site coupling in various systems, such as coserved near bistable turning points where complete noise
densed matter physics and biology, see R&®] for a gen-  suppression is observed in the sum of the fundamental inten-
eral treatment of discrete systems. Thus, the name dimer insities (implying strong anticorrelations across the
plies that coupling between two discrete sites are being takewaveguidey the strongest violations occurring in the limit
into account. For a single waveguider site, we shall use where the fundamental input coupling loss rate is much
the name monomer, a case corresponding here to a bulk nolarger than the second-harmonic one. The fact that bistability
linear medium and neglecting diffraction. gives rise to highly nonclassical effects turns out to also hold
It has been shown that in the SHG quantum optical monofor the SHG monomer, and has to our knowledge not been
mer excellent squeezing of the output fields is possible closebserved before; usually the self-pulsing transition has been
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used to observe violations of the standard quantum limit,
which we also observe in the dimer. The bistable transition
has previously been observed to produce nonclassical states
in other systems such as dispersive and absorptive optical
bistability [12,21] and Raman lasef22].

A closely related optical model is spatially coupled lasers
[23], where a single laser medium is pumped by two beams
spatially separated. Waveguiding is achieved by thermal
lensing, in which the temperature-dependent refractive index x(z) waveguides
of the laser medium creates a guiding effect, and the cou-
pling strength is controlled by the distance between the pump
profiles. The quantum noise induced correlations in these
systems have not yet been reported to beat the standard
guantum limit when Kerr-type nonlinearities are considered
[24,25, except when the coupling arises solely due to ini-
tially correlated noise terms of the pumj&6].

The cavityless setup of coupled® waveguides has pre-
viously been investigated, both from a classical and a
quantum-mechanical point of view. In the classical model of F|G. 1. The setup. Two nonlinear waveguidesand B inside a
waveguide arrays, the focus of attention has been on solitogavity pumped by a classical field.
behavior originating from the couplinf27], whereas the
cavityless dimer was shown to produce chaotic states aw
from the integrable limittwhere second-harmonic coupling
is neglectefl[28]. The quantum behavior of the cavityless

%n number correlations of the output fields, and the semi-
analytical spectral variances are derived in the linearized

dimer has been investigated by the group of Peeinal. (for limit. Sgctlon V is devoted to th_e results of the analytical
calculations as well as the numerical simulations. A summary

a review see Ref29)]) giving the name “nonlinear coupler is made in Sec. VI where we also discuss the results ob-

to the model. They have investigated both co- and counter=. ) : o
propagating input fields in parametric oscillation and, e_g_talned. Appendix A shows details about the derivation of the

the transfer of quantum states from one waveguide to thgua5|probabll_|ty distribution equaﬂons_use_d to ponnect the
other. Mmaster equation for the quantum Hamiltonian with the clas-

The model presented here is also closely related to thglcal looking stochastic Langevin equations. The numerical

dynamics of coupled atomic and molecular Bose-Einsteir{mathOd is discussed in Appendix B.
condensate$BECS9 [30,31], where the photoassociation of

an atomic condensate may produce a molecular condensate
with an atom-molecule interaction that is reminiscent of the
interaction between the fundamental and second-harmonic e consider the setup shown in Fig. 1. Tw/@’ nonlinear
photons in SHE32]. The opposite process where the pho-waveguides are contained in a cavity with a high-reflection
todissociation of a molecular BEC creates an atomic BEanut mirroer and a fu”y reﬂecting mirroMz at the other

has been shown to produce squeezed sfagisa model that  end. The cavity is pumped at the frequenay and through

has the quantum optical equivalent in the OPO. If an analogyhe nonlinear interaction in the waveguides SHG creates
should be drawn between the quantum optical dimer preéphotons of the frequency,=2w;. The cavity supports a
sented here and BEC it would consist of placing two suchjiscrete number of longitudinal modes, and we will consider
coupled molecular-atomic BECs in separate quantum wellghe case where only two of these modes are relevant, namely,
Thus, evanescent tunneling of the wave functions betweethe modew; .5, closest to the fundamental-harmor(ieH)

the wells would introduce the dimer coupling, similar to frequency andw, .., closest to the second-harmonisH)

what is done in Ref|34] for a normal BEC. frequency. Using the mean-field approximation, thelirec-

We should finally stress that the cavity setup discussed ifon, in which the pump beam propagates, is averaged out.
the present work gives rise to two major differences to therhjs approach is justified as long as the losses and detunings
work in cavityless waveguides as well as for the BEC. FirSlyre small. We furthermore assume perfect phase matching in
of all, the cavity introduces losses in the model through thene crystal. The waveguiding implies that diffraction in the
input mirror, and second, external pump fields appear in th?ransverse plane may be neglected. Baft) and B,(t)

equations acting as forcing terms. “ x . ,
The paper is structured as follows. In Sec. II, the model id A2(t) and Bx(t)] denote the FH(SH) intracavity boson

introduced, and the stochastic Langevin equations are d@Perators of waveguida andB, respectively. They are nor-
rived from the full boson operator Hamiltonian. Also, we Malized so they obey the following equal time commutation

discuss the allowed values of the coupling constants. In Se€elations:

I, the linear stability of the Langevin equations are investi-

gated, and the bifurcation scenario of the model is discussed. . . A

In Sec. IV, we discuss the framework for the two-time pho- [0i(1),0](h]=6;, 1,j=1,2, O=AB, 1)

Il. THE MODEL
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while [A;(t),B](t)]=0. The system is modeled through the iS the QPD equation using the positifeeistribution giving

Hamiltonian normally ordered averages, which we will use for the linear-
ized analysis. For the numerical implementation, the Wigner
A=A+ AYS+ Apg, (2)  distribution is used to obtain E¢A8), in which symmetric

averages are calculated.
where the system Hamiltonians in the frame rotating with the If the QPD equationgA7) and (A8) are on the Fokker-
pump frequency are given by Planck form(A9), an equivalent set of stochastic Langevin
equations(A10) can be found to by using Ito rules of sto-
chastic integration39]. For the Wigner QPD equatioi@8)
this is not the case because of the third-order terms, however
R R these terms, which have been shown to model quantum jump
+iﬁ(5p,001—5’gvool), O=A,B. (3)  processeq40], are generally neglected and the resulting
Fokker-Planck equation turns out to be a good approxima-
The detunings from the cavity resonances are giverspy tion, to the original problem. Using this approximation the
= |~ wj cav, ¥ IS proportional to they'?) nonlinearity and  normalized Langevin equations for the Wigner QPD equa-
&p,0 are the external pump fields at the FH frequency of thetion are
individual waveguideg$35], here treated as classical fields.
The coupling between the waveguides is modeled as over- A =(—1+iA;)A;+ASA,—iJ,B,+V2A,4(1), (78
lapping tails of evanescent waves so it may be assumed
weak, implying we can describe it as a linear process Ay=(—y+iA,)A,— %Af—iJzBﬁ \/2_'}’Ain,2(t)a (7h)

A o psa dAK .on Ao
AYS=—165,0]0,-15,0}0,+ 7(01202— 0%0))

N A RTLA AT A RTLAR AT ,
Pap= A(ABLFBA) TA(AB2+ B () By=(— 1+iA1)B,+ BY B~ id,A,+ V2Ba(t), (70
J, and J, are the cross-waveguide coupling parameters of . . Lo

the FH and SH, respectively. The time evolution of the re- Bo=(—y+iA2)B,—5BI—iJoAs+ 2¥Bin A1), (70)
duced system density-matrix operaforin the Schrdinger

picture is then given by the master equatiee,37: where the dot denotes derivative with respect to time. The

fields {A;,Af} and {B;,Bf'} are normalized equivalent
ap i R R R L c-numbers to the operato{é\j ,A]-T} and{éj ,IABJ-T}. The input
ot~ plHelt(Liatloatliptlop)p. (5 fields are describing the pump field entering the cavity
through the input mirror as well as the noise coupled in here
The continuum of modes outside the cavity is modeled as &ccording to the Liouvillian term¢6)
heat bath in thermal equilibrium, and the coupling to these e
modes has been included through the Liouvillian terms
9 Fra®=7+ 6,0 FndO=£e,0, (89
L;.0p=7([0;,p0[1+[0;p,0/])
A A A A S(t—t")
+yn([0;p.0]1+10].p0D).  (® (& (Dée ()= 8 —5—, (80)
S
These terms describe the losses of the fields through photons

escaping the cavity, and simultaneously they model fluctua?’!th F=A,B. All other correlations are zero. The positife-

tions entering the cavity through the input mirror, a conse-QPD equatioriA7) is on Fokker-Planck form so no approxi-
quence of the dissipation-fluctuation theorf88]. The loss ~Mations are needed. The equivalent set of LTangevm*equa-
rates of the input coupling mirror are given by, whereas UONS Is given by Eq.(7) by replacingAj —A; and Bj

_ t : .
the termm}h:(ehwj ’keT_ 1)~ are the mean number of ther- —Bj, as well as the equations for the fields

mal quanta in the external bath modeswat We shall here . . :

neglect thermal fluctuations by settingﬁéﬁe bath temperature Al=(=1-1ADAT+HAAG+iJiBl + \/EALJ(U’ (%3
T=0 yielding n}h=0. First of all, this is a good approxima-
tion for optical systems since hefieo>kgT, and second, we
may hereby focus on behavior solely due to the inherent
guantum fluctuations of light.

The master equatiofbd) is difficult to solve as it is, there-
fore, we apply the now standard technique of expanding the
density matrix in a basis of coherent states weighted by a Bl=(—y—iA,)Bl—3(BD)2+iJ,Al+ \/2_75%,2(0-
quasiprobability distribution(QPD). The details of this (99)
guantum-to-classical description are given in Appendix A, . + + . .
and the result is a partial differential equation of the QPD.The fields{A;,Aj} and{B;,Bj} are normalized equivalent
This QPD equation depends on the choice of ordering of the-numbers to the operatof#; ,AjT} and{B; ,BJ-T}. The input
corresponding quantum mechanical averages. Equéton fields for the positive® Langevin equations are

Al=(—y—iAp)AL-3(AD)?+iJ,Bl+ 2yAL,z<t>,(9b)

Bi=(—1-iA;)BI+B,B}+iJ;Al+ 2B (1), (90

043802-3
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E E L. d R
Fina()=—=+&,(1), Fhi=—=+& (1), ) a
, \/E 1 y \/E 1
(103
Fina)=0, Flo(t)=0, (10b) A
b Foo(t—t")
(&r (D& ()= ~on. (100 -2 -1
FIG. 2. Parallel planar waveguide setup shown in xhdirec-
N Fo Fg&(t—t’) tion. The width of the waveguides Ig, and the distance between
<§F1(t)§|:l(t )>:2—ns’ (10d  them isd. The transverse distributions of the lowest-order modes

for a realistic setup are shown calculated using a step profile of the
with F=A,B, and again all other correlations are zero. Therefractive index.
doubling of phase space associated with the posRivep- _ _
resentation(see Appendix A for detailsimplies that g;r is weqk perturbation. This approach assumes that the 'transverse
uncorrelated tc; . Additionally it implies thatA; andAl are ~ Profile u(x) and propagation constagtof the modes in the

independent complex numbers and onlv on averagalis Waveguides are left unchanged, and only the amplitude is
:A*p P y 98, modified by the perturbation. The coupling constants of the
P

The Langevin equations have been normalized by intro_propagation equations of the waveguides are then found as

ducing the dimensionless variables [42]
2 25\1,2
i= _r2 a9 J =MJM dxuy (X)ug, (x 13
t—'ylt, Y= Zy AJ—Z, (11@ A.By ZBA:L a1, Al( ) Bl( )1 ( )
P 5. 11b wherek; =2m/\ is the vacuum wavenumber of the FH, and
R J_ylﬁi’ (11D the mode profiles are assumed normalizedf $gdxu?(x)

=1. Thus, Eq.(13) has the dimension per meter. Figure 2
_ K _ K shows the lowest-order modes of the isolated waveguides as
Ainj(t)= =5 ainj(t),  Binj(t)=—5Bini(t), (110  calculated for a realistic setup(x) andg are found through
Y1 71 a boundary value consideration. If only coupling between
modes of same order is considered, we haXfoJBlAl
()= %/251'(”' E— izgp’ jj:i, (119~ =J"P. Applying the mean-field approadH] the coupling
1 V1 71 parameters of Eqs(7) is then given byJ;=J"R . /7,
where L, is the length of the cavity, and is the cavity

and the tildes have been dropped. The fieidsand 8; are  yqungd trip time. From Eq(11d), the normalized coupling
the unscaled-numbers, cf. Appendix A. We have further- parameter is found through, =T, /(27) whereT; is the FH

more introduced the dimensionless quantity intensity transmission efficiency of the input mirror, so we
I 75- (12) obtain[43]
This parameter sets the level of the quantum noise, cf. Egs. jsz]propZLcaV_ (14)

(8) and (10), and in the OPO it represents the saturation Ty

photon number to trigger the parametric oscillation.

For S|mp||c|ty, we have assumed real and equa| pump As a result of these considerations, we see that the SH
rates in both waveguide® a= &, g=&,. The consequence is coupling parameter generally will be lower than the FH one.
that the same input mirrors as well as intracavity paths ard his is clear from the calculated modes in Fig. 2, where the
used for both waveguides, implying identical detunifgg] ~ SH modes(dashed decay faster than the FH modesolid).
as well as losses for the FH fields and the SH fields, respeddowever, it is impossible to generally say how much weaker
tively. and when the distance between the waveguides is decreased

The coupling strengths between the waveguides are coibe coupling parameters become closer to each other. Finally,
trolled by J; and J,, and it is relevant to consider what the actual values o; are highly sensitive to the specific
values these may take. Figure 2 shows an instructive exsetup. Not only in terms of waveguide parameters., dis-
ample, where we consider symmetric step-index parallel platance between guides, the modes in the gyjdag also on
nar waveguides with a corgladding refractive indexn,,  independent parameteisavity length, input transmission ef-
(ng). The weakly guiding limit is assumed wheng,=n,. ficiency). Using parameters from realistic setujsimilar to
Taking the FH field of waveguida as example, the coupling the cavity setup discussed in R€5]) we obtained normal-
from waveguideB can be found by considering waveguifle ized coupling parameters of up to 50, while still preserving
in isolation and taking the presence of waveguRleas a the assumptions of weak coupling as well as the mean-field

043802-4
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limit. Finally, when coupling between the lowest-order
modes is considered we haye>0.

Asymmetric

IIl. LINEAR STABILITY

In this section, the Langevin equations derived previously 4
are linearized and the linear stability is investigated to obtain : Asymmetric
a bifurcation scenario in the classical limit where noise is
absent (i;—<). In this limit the Langevin equations from . .
the different representations give the same result, a natural Bistablc T Bistable
consequence from the fact that in the classical limit the op- i g asymmetric
erators commute. Additionally, in Sec. IV we are going to
use the linearized equations with noise to derive analytical
results for the noise induced correlations. For this purpose, it
is more convenient to use normally ordered intracavity aver-
ages, as will be explained 'ﬁte“ and th|§ SeCt'on will, there- FIG. 3. Bifurcation diagram showing the primary instability for
fore, only concern the positive- Langevin _equatlons. The A;=A,=A, y=0.1, andJ,=1.0, as the pum is changed. In the
results of this section reveal both symmetric and asymmetrigisiaple area, the stability of the upper branch is indicated.
steady states in the two waveguides, as well as bistable be-

havior and Hopf unstable solutions. _ ~ with the diagonal cross-coupling matrix
The linearization is particularly simple in theymmetric
case. Here the steady states in the waveguides are identical, Ay=diad —iJ; 133 —1J;, iJ5], (19

so the FH steady states in waveguilendB are equal and
equivalently for the SH steady states. The symmetric steadgnd the monomer matrix is
states of the waveguides can be found from the monomer

equations, i.e., using the results of Ri&f] and applying the —1+id; A Al 0
substitution Aj—A;—J;=d;. In the _si/mmetric case, the Ab —1-id, O Ay
o b
steady states are denoteg=B;= \/I:je i giving A= ~ A 0 ~y+id, 0
14+ (y—didy) — 0 — A7 0 —y—id,
E2=T§#+I1(di+l), (158 !
3+ (20
|_2=|_§[4(d§+ )7L (15h) The diffusion matrix is also diagonal
_ D=diad A, A5 0 0 A, A5 0 O], (21
¢1=—argl—id;+1,/[2(y—idy)]), (159
andD=B'B.
¢o,=—arg —y+id,)+2¢;. (150 The classical stability of the system is found by solving

the eigenvalue problerAv=A\v, which was done irMATH-

We may linearize the positivE-Langevin equations?), EMATICA. The analysis is characterized by two cases, either
(9), and (10) around the symmetric steady stat@s=AA,; when one physical solution exists to the closed problem
+A; andBj=AB;+ A, [44] to get the matrix equation (159—(15b), or when the system is bistable and three physi-

cal solutions existin this case each solution must be ana-
: B lyzed individually. The stability of the steady states may
Aw=AAw+ \/Tn(t)’ (16) now either change with the critical eigenvalig. having
s Im(X\; )=0 at the critical pump valu€&s,,, which means
that the symmetric state of the system is no longer stable.
When this happens a new state wilh+ B; is stable instead,
AW=[AA, ,AAI AA, AAZ AB, ,ABI AB, ,AB;]T, and the actual vaI_ues of these new steady_ states are not easily
calculated. We will not address the stability of the system

andn(t) is a vector of Gaussian white noise terms correlated®@yond the asymmetric transition any further in this paper,

whereAw is a vector of fluctuations

as however the transition to the asymmetric state will be used to
look for nonclassical correlations. The other possibility is
(nj(tny(t"))y=a(t—t"). (17) that the system changes stability with hj¢)#0 at the
critical pump valueEgp, which corresponds to a Hopf insta-
The matrixA is block ordered into four 44 matrices bility leading to self-pulsing temporal oscillations.

The system is well characterized by the relative loss rate
v, which in the SHG monomer was shown to determine the
, (18 degree of squeezing as well as which field the best squeezing

Am  Ax

A=A, A,

043802-5
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was observefi12]. Following the simple layout of the cavity while all other commutators are zero. We want to express
shown in Fig. 1 implies that;=A,=A [41]. The bifurca- correlations of the out fields entirely on correlations of the

tion scenario in thgJ,,A} space forJ,=1.0 is shown in intracavity fields, hence we want to get rid of terms involv-

Fig. 3, which displays a rich variety of instability regions. ing O, j(t). Using arguments of causality it may be shown

These can be accessed by using the plEvgs bifurcation  that this can only be done if time and normally ordered cor-
parameter. FOA <1, bistable behavior is observed, and therelations are considerdd5], e.g.,

upper branch may be both Hopf unstable as well as asym-

metrically unstable as indicated. Far>1, a large Hopf re- (Al (). Agj(t))=2y(AT(1),Ai(t)), (263

gion is seen, while fod, large, asymmetric states are ob-

served. Aut (1), A ()= 2y5(Aj(ma{t,t']),
Settingy=1 a similar scenario as foy=0.1 is observed: Aou, oui (1)) i

On resonance self-pulsing symmetric states dominates, while Aj(min[t,t’])>, (26b)

bistable solutions may be seen farx<K —1 and asymmetric

states appear whel>0. Fory=10, the self-pulsing insta- which precisely implies time and normal order of the corre-

bility dominates and asymmetric solutions only appear whenations. Since this is exactly what therepresentation com-

detuning is introduced and simultaneous large valued;of putes the intracavity operator averages on the right-hand side

andJ, are chosen. Bistable solutions are not seen here exf Eq. (26) may be directly replaced bg-number averages

cept for very large coupling strengths, a consequence of thom the P representation.

criteria for bistability (Eq. (6) in Ref. [3]) The intensities of the output beams may be found from

the photon number operatbiS, ;= Ol ;Oou; - In a photon
|dal(|dy|—3) counting experiment two-time correlations of the intensities
V3[dy|+1

may be calculated as
All these results indicate that the most diverse bifurcation C(ATI%k(T)E<N§ut,j(t)iNgut,k(t)vNﬁut,j(t"' 7) £ NGy(t+ 7))

scenario is whery<1. - . A
:(<Nout,j>+<Nout,k>)5( T)+<:Nout,j(t)

IV. PHOTON NUMBER SPECTRA + Nc?ut,k(t)!Néut,j(t+ e+ N(B,ut,k(t+ 7_):>

The linearized Langevin equation for the positReep- . .
resentation can be used to analytically calculate the spectrum =2(yi (NP + 1N 8(7)
of fluctuations in the stationary state, provided that the fluc- () < (5 _
tuations are small. These intracavity fluctuation correlations +4(:ONR (1), Na g, (t+7)1), (27)
can be directly related to the output correlations by using the
input-output theory of Gardiner and Colld#5]. We will where the notatior{: :) indicates a time and normally or-
only present results in the case where the symmetric steadiered average. In the second line we have used the commu-
states are stable. tator relationg24) to rewrite to normal order, while the last

The input fields@in'j(t) coupled into the cavity through line follows from Eq.(26). We have also introduced

the input mirror are posing an instantaneous boundary con- CE) e QA ~B “0  Ata
dition for the output fields 5NAjBk(t)_ NFOE YN,  Ny=0;0;, (28
and calculated the variance @5, T)=(ST)—(S)(T).

It is more convenient to investigate these two-time corre-

It should be stressed that in this equatignis only the loss Iatl_ons In the Fourier frequency domain using the Wiener-
rate of the input mirror, and does not include additional ab—Kh'mCh'ne theorenj38]

sorption losses of the cavity that might otherwise have been

included in the Langevin equations. Also note that the input V) (w):f
operator is in the FH taken as a both the classical pump as «

well as the fluctuations around this classical level originating

Oouj(1)=42%,0;()- 0, (1), O=AB. (23

drel*"Cid (1)

_ QA QB
from the heat bath interactidiso really an operator equiva- =2(7 (NP + 7dNipy)
lent of the Langevin input fields from Eg&8) and(10)]. The o . ) R
fields outside the cavity obey the standard free field commu- +4 | drele(: 6N (1), N (t+7):)
> AJBk A]Bk
tator relations *°°
A . (293
[Ooutj(1),Ogue(t’) = 6 o(t—t"), (24
; =Co\Vi 3, (@) (29D
an
. . Here we have introduced the spectrum normalized to shot-
[Oin,j(1), O k(t') ]= Sjko(t—t"), (25) noisevgfgk(w), and the shot-noise level given by
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Can=2(7(Nf) + n(Ng)) (30) Vi (@) =V ()92, V(@)=Vj(w)k*7, 5
is with this normalization unity. We will in the following
implicitly with a bar denote spectra normalized to shot noiseand tildes have been dropped.
The shot-noise level is equivalent to the standard quantum The linearized equation&l6) may be solved directly in
limit, i.e., the limit between classical and quantum behaviorfrequency spacésee Ref[46] for detailg. So let us define
Hence |fA and B, are coherent states the variance will bethe spectral matrix of fluctuations in terepresentation in

VAJ-Bk(w) 1. A complete violation of the shot-noise level the steady-state limiwhere we may choose the timerbi-

1) o ] ] _trarily and, henceforth, take=0),
VATBk(“’) =0 implies that no fluctuations are associated with

the measurement of the intensitid§, ;= N5, . The corre- S .
lations between the fields of the same waveguide are S'(w)= ﬁwdre' (AW(0)Aw(T) e, (37
CA (1)= <N°“tl(t) NO“U(H 7) with the superscriph indicating that the averages are equiva-

lent to normally ordered quantum mechanical averages. This

=2y (Nf)8(7) +4¥5(: NA (1), NA (t+7)1), may be calculated using

(31
S(w)=(—iwl—A) Dol —AT) "1 (39
which means that the monomer spectra are
. wherel is the identity diagonal matrix.
o /NA 2 w7/ R \ . In order to calculate intensity correlations we evaluate
Va(@) =27 (N7 +47, Jiwdre (:Nay (1), Na (U 7)), terms like(11(0),15(7))p, and expressing this in terms of
(320 the fluctuations around the symmetric steady-state, second-,
R third- and fourth-order correlations ihw are obtained. Due
so the shot-noise level is heEESNZZyI-(N]A). to the strength of the steady-state values higher-order corre-
Until now everything has been kept in operator form. Thelation terms may be neglected, so we get to leading order
next step is connecting the operator averages witimber

classical averages, which will here be done with the semi- (80, 18(7))p=A; A* (AAT(0),ABy(7))p

analytical calculations in mind. Thus, we apply the positive- ' . !

P representation averages and note that we shall only con- +A}* Ak(AAj(O),ABE(T»p

sider symmetric states making;=3;, and that the spectra . o

eventually calculated are linearized. +ATA(AA((0),AB(7))p
Expressing the spectr29a and (32) in dimensionless +AjAk<AAT(O),ABE(T)>p.

c-numbers from thé>-representation, we readily have

+) Using this result the normalized dimensionless spectra
Vid (@) =203 (il + nd ) 9 P

(333 are
+4f drel (5154, (1), 818, (t+7)p, 5
VL (0)=1+ =———{V} (0)+ y?V] ()
AA, [+l Ay Y Va,
(333 1t 7yl
+2yRd AT Ax(S]f(w) + Sl — w))
-1 ioT
(33b
with the subscript referring to the averages being calcu- VA+B (0)=1+=—={V] (w)+ 2V} ()
lated in theP representation. We have here usger y;/y; ! iyl
and thec-number equivalent of Eq28) 2 YR A Ay(Sly @) + STy — @)
2118 18
SR M=rIN 0=y, I[=F[F, (34 +Af A3 (Si{ )+ Shy( )1}, (39b
while the shot-noise leveB0) is n n
\% +V
g — —— Vi (0)= 1+M_2Re{8 Te( @)+ ST — o)
Csn=2ng “(yjlj+ 7l - (39 ! Iy
The dimensionless spectra are found by the scalings +e 2%(S]y(w) + Sy(w))], (399
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Vi (©)+Vg ()
vgééz(w):lwzlfz
2

+2y R(:'[Sgg(w)

+ S — w) +e " ??2(Si{ ) + Siy )]
(399
Here we have used the normally order@udicated with a
superscripin) single-mode spectrum defined as

VA (@)= f:dre“”<lﬁ<0).lf<r)>p, (40)

SO

Vi, (@) =1,(S] (@) + S — w) + 2 Re S}y (w)e~241]),
(413

ng(a)) :Tz(3§4(w) + 5%4( —w)+2 Re[S3n3(w)e*i2¢2]),
(41b
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the second-harmonic quadraturé(A,e~'%2—Ale'?2) is ob-
served. These squeezing spectra were optimized by choosing
a proper value of the quadrature phase and as it turns out
0,= 0,= /2 maximizes the squeezing in both cagsemrre-
sponding to the amplitude quadraturEor exactly this value

the quadrature correlations coinci@®e leading order with

the monomer intensity correlatioi31) so the results of Ref.
[12] also predicts excellent noise suppression in the mono-
mer photon number variances considered in this paper. Note
that the choiced= m/2 only maximizes the squeezing when
detuning is zero, as it was shown by Olsaral. [47].

Generally, the violation of the shot-noise limit requires
that the fluctuations diverge in a given observable of the
fields. When this happens the spectral variance for this ob-
servable becomes large, and the canonical conjugate observ-
able of the fields will in turn have a small variance as a
consequence of the Heisenberg uncertainty relation of ca-
nonical conjugate observables. A typical situation where the
fluctuations diverge is close to a transition from one stable
state to another, and therefore violations of the shot-noise
limit is normally studied close to bifurcation points. In this

and V'Elj(w)=V,'lj(w). With these quantities the monomer paper, we study the sum and the difference of the intensities
spectra(33b) normalized to shot noise are readily calculatedof the fields, so a violation of the standard quantum limit

_ 2')/-
Va(0)=1+ I:_‘vgj(w).

J

(42

The calculations of the spectra use the general symmet

properties of the spectral matri8"(w), so, e.g.,S};(w)

=[Sy(w)]* and Sjyw)=S;)(— ).

V. RESULTS

In this section, we present intensity correlation spectrap

implies that sub-Poissonian statistics is observed and that the
photons at the photodetectors are antibunched; they arrive
more regularly than if coherent beam intensifiehich obey
Poissonian statistitsvere measured. The problem with the
intensity observable is to find the conjugate observable in
hich the fluctuations should become large when the inten-
sity correlations violate the standard quantum limit. Numer-
ous attempts to create the most intuitive conjugate observ-
able, namely a phase operator, has not been entirely
successfu[38]. On the other hand, in a photon-counting ex-
eriment it is exactly intensity correlations that are mea-

both from the semianalytical derivation, as well as resultsSUreéd: making them a suitable choice for a direct experimen-

tal implementation.

from the numerical simulationghe numerical method is dis- ! . .
cussed in Appendix B The chosen examples are only illus- The ar)alytlcal and numerical results presented in the fol-
trative for the overall behavior, and the results hold for large®Ving display excellent mutual agreement. In order to

parameter areas. This is especially important to stress for t hieve t,h's it was necessary to have the tlme resolution of
coupling parameters, since they are not so easy to contr he two-time correlations low enough to describe the tempo-

experimentally as the detunings and loss rates ral variations, while simultaneously keeping upper limit of
In order to understand the effect of the coupling betweer{€ correlation timecorresponding to the limits— = of

the waveguides, a comparison to the results of the singld'¢ analytical integrallong enough for the two-time corre-

waveguide will be made. It is important to distinguish be- lation to become close to zero. Otherwise, the temporal Fou-

tween two cases(@ The monomer correlations, where we ri_er transform of_the correlati(_)ns will give spectra that are in_
talk about the correlations between the fields within a singléiSagreement with the analytical results. Needless to say, this
waveguide given by Eq(42) and where coupling is still ! ad to be checked for each case as the parameters were var-
present(b) The limit of no coupling, where the spectra will 1€d, but generally we usell=512 or 1024 points with a
behave as a single-isolated waveguide. This limit is imporf€selution in the range 7=0.04-0.2 to calculate the two-

tant since it allows us to compare with the results previoushyime correlation<C(7). Finally, the length of the simulations
obtained by Collett and Wall€.2], and, henceforth, this limit _Was around 10time units(corresponding to a measurement

is referred to as the SHG monomer. Finally, we denote thdime in the ms regimebefore the correlations converged to

spectral varianceﬂf&k(w) as the dimer correlations or the degree shown in the following.

variances.

It was shown by Collett and Wallgl2] that in the SHG
monomer without detuning very good squeezing in the fun- First, we consider the case whefeis small and good
damental quadraturei(Ale“Hl—AIe‘ %1) is obtained when nonclassical correlations in the FH fields are expected

v is small, and conversely whepis large good squeezing in (VAl(w) =1y/[1+v] close to self-pulsing transitiong12].

A. y small
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Vo),

-10 -5 0 5 10

_ FIG. 4. Photon number spectﬁ\—lgl(w) for the parameters in FIG. 5. Photon number spect@,flgl(w) for the parameters in
Fig. 3 andJ;=3.0, A=0, andE=3.275, on the lower branch just Fig. 3,J,=2.0, A=0, andE=2.3. Lines show analytical results

before a bistable turning point. Lines show analytical results whiley hiie points are numerical results. The shot-noise level is indicated
points are numerical results. The shot-noise level is indicated withyii, Cen.

CSN'

o the spectra\_/gfg,(w) have no equivalents in the no-coupling
For y=0.1, we observed the strongest violations of the, . 170
intensity correlations.

guantum limit close to bistable turning points. An example is ; . : L . .
shown in Fig. 4 located in the bistable region of Fig. 3, and In the self-pulsmg region of F|g. 3, itis possible to o_btaln
) L ood correlations if the system is set close to the bistable

fche Zysftem ;]S s_ethon th_e Iowe_r bra;cz_of the bistable ?urr]v rea. The spectra in Fig. 5 are for a pump value where both
Just before the right turning point. The dimer spectrum of they, o pisiaple and the self-pulsing eigenvalues are of approxi-

sum of the FH fields shows a near Lorentzian dip in thémately the same strength, and the plot shows that the dimer

region of w=0 that goes down tGT(’,flél(w)ZO.Z, implying  spectrum of the FH difference have strong noise suppression
strong twin-beam anticorrelations, while the FH differencefor nonzerow, that originates from the self-pulsing instabil-
shows excess noise here. Takiygeven smaller we were ity setting in atEs=4.7. Also the sum shows strong noise

able to getV(;g3 (w) very close to zero in the presence of suppression now ab=_0, cz_:tused by the proximity of the
151 bistable area which gives rise to an eigenvalue withNjm(

bistable turning points, a behavior similar to th&(1+y)  —q that never has R&)>0. The good correlations ob-
behavior observed in the SHG monomer close to self-pulsingerved here are apparently a result of a competition between
transitions. The excellent correlations are only seen close tghe bistable state and the emerging self-pulsing instability,
the bistable transition, taking, e.g = 3.2 for the parameters that eventually dominates for higher pump levels. When the
in Fig. 4, the minimum of the spectrum Eﬁj% (w)=0.35. self-pulsing threshold is approached, the nonclassical behav-
L ior is less pronounced. This does not necessarily mean that

Returning to Fig. 4, aw=4 the FH sum spectrum again ;
shows nonclassical correlations of approximately 60% of thenonclassmal states are not strong here, but probably that the

shot-noise limit. The frequency almost coincides with theIntenSIty 's the wrong observable in which to observe non-
imaginary part of one of the more damped eigenvalues.

Here it is relevant to mention that bistability is also 20¢
present in the SHG monom¢B,48| [as Eq.(22) indicates [
this requires nonzero detunings with equal $jgand to the 1.5¢

best of our knowledge nobody has here investigated the 73
quantum behavior. Let us write the detunings of the SHG & 1.0F
+ - [

monomer asK,—. Due to the invariance of the symmetric Ts‘ i
steady-state solutions wheky=A;—J; we can obtain the 05
same bistable state investigated in Fig. 4 in the SHG mono- [
mer by settingA;=—3.0 andA,=—1.0. The spectrum 0.0t
Va, () displays here exactly the same behavioWg§, («)

in Fig. 4, so also in the SHG monomer perfect antibunching
behavior may be obtained in the smallimit. Generally, the

dimer spectra/}’} () can be reproduced by the monomer FIG. 6. Photon number spectra fdn =A,=1.1 andy=0.1,

— 1 = o _ J;=20.0,J,=1, andE/Eg,=0.97. Lines show analytical results,
SpeCtraVAj(w) when takingAj=A;—J;. This is not valid,  \hile points are numerical results. The shot-noise level is indicated
however, close to a transition to asymmetric states, and alseith Cgy.

20
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FIG. 8. Photon number spectra on resonance ang$ot0 and
J;=6.0, J,=2.0, andE/Egz=0.95. Lines show analytical results
gvhile points are numerical results. The shot-noise level is indicated
with Cgy-

FIG. 7. Photon number spectra on resonance andg fot and
J;=4.0,J,=1.0, andE/Egp=0.95. Lines show analytical results,
while points are numerical results. The shot-noise level is indicate
with Cgy.-

. . . while the bistable transition displays only weak violations.
classical correlations here. Such a case was observed in tt&es an examole of the self-pulsing correlations Eid. 7 displavs
SHG monomer, where it was found that detuning of the sys- P b g 9. pay

. i »~selected spectra for the dimer correlations. The sum of the
tem makes the squeezing ellipse turn so the best squeezingds, o 4o displays strong correlationseat-0, which goes to
no longer observed in the amplitude quadraf4rél. ’

0 T - . .
When detuning is introduced, the system can becomzsm of the shot-noise limit wheB—Esp=16.7, implying

asymmetrically unstable for certain couplings as was ShOWSCaeve pl:? dS:an'(Ia'heOI:orrsetlrgtrilgn &qxgg;eltﬁlaog?ﬁerae%rgssof IL‘:
in Fig. 3. Generally, the asymmetric instability shows sub—FH ir?tensitiés is also strong: for nonzer correlations
Poissonian twin-beam correlations in the dimer FH differ- ng, fol

S : around 50% of the shot-noise limit are seen.
ence spectrum, which is especially pronounced whgn
>J, where almost perfect antibunching was observed. In
Fig. 6 the dimer spectra_{(Ailgl(w) are shown forA=1.1,

J;=20 andJ,=1, taken close to the symmetric transition . Fo_r Iarggy, the SHG monomer predicts strong shot-noise
E4m=80.5, and intensity correlations until 8% of the shot- violations in the SH spectrum at the self-pulsing threshold

noise limit is seen in the FH difference correlations at non{12] [Va,(@)=(1+7) " close to self-pulsing transitiohs
zerow. By carefully selecting the parameters we were everor the dimer similar levels of correlations can be obtained
able to see correlations until 3% of the shot-noise levelclose to the self-pulsing transition. As an example of the
which underlines that excellent nonclassical correlations arbehavior Fig. 8 shows the correlations closeEig=246.0:
observed here. This result is quite robust; good subhighly nonclassical twin-beam correlations are observed in
Poissonian correlations are observed also further below thine sum of the SH intensities, indicating strong anticorrela-
transition as well as for considerably lower values of the FHtions. For the selected parameters, we observe also sub-
COUp”ng Strength. In contrast, the peaked structure arounﬂoissonian behavior ”\_/,(Aié ((1)), WhiCh, in contrast to
»=0 is quite sensitive to the pump level since it is not seen— . , 272 o _
taking the system even closer E,,,,. We note from Fig. 3 Vi,s,(®), cannot be observed in the SHG monomer with
the presence of the self-pulsing instability for the parameterequivalent detunings. Although asymmetric areas were found
chosen, and even if quite good correlations are observed iffor nonzero detunings, only weak sub-Poissonian correla-
side the large asymmetric area fy large, the best results tions were observed there in the difference of the SH fields
are obtained close to the self-pulsing regions. Again thigthe sum correlations still show strong sub-Poissonian corre-
shows that two competing instabilities appear to give rise tdations here, as expected from the SHG monomer
stronger nonclassical correlations. We note finally that théredictions.

frequencyw=11, where the best correlations in Fig. 6 are

observed, almost coincides with the imaginary part of the VI. SUMMARY AND DISCUSSION

eigenvalue that is damped the most. Thus, paradoxically, in

this case the least dominating eigenvalue is determining the In this paper, we have proppsed a model we denote the
frequency of the strong correlations. quantum optical dimefor studying the effects of a simple

mode coupling in a cavity. The model consisted of ty/@
nonlinear waveguides in a cavity, with coupling between
them from evanescent overlapping waves that was assumed
Setting the loss rates to be identical=1, the self- weak and linear. We chose to restrict ourselves to investigat-
pulsing instability gives rise to strong nonclassical correlaing nonclassical correlations, and, hence, derived the nonlin-
tions all the way to the transition to the self-pulsing state,ear quantum equations of evolution for the system, resulting

C. y large

B. y=1
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in a set of stochastic Langevin equations. ric regimes, and also in asymmetric areas close to bistable
Using a linearized analysis we showed that the system foand self-pulsing regimes. These enhanced correlations from
low-pump levels allowed a symmetric state to be stablecompeting instabilities has to the best of our knowledge not
where both waveguides have the same steady state. Deperitgen reported before.
ing on the system parameters, this state destabilized into a The relative input mirror loss rate= vy, /v, between the
self-pulsing state, where temporal oscillations are observed®H and FH fields had a strong influence on the sub-
or bistable solutions in the steady-states occurred. For sonfefissonian behavior, as was previously shown by Collett and
parameters, the symmetric steady-state lost stability in favoyValls [12] in the SHG monomer. For smayl, the strongest
of an asymmetric steady state, in which the two Waveguidegonclassmal states were mainly observed in the FH fields
have different steady-state solutions. while for largey they were mainly observed in the SH fields.
We investigated the effects of the quantum noise presengince the photon lifetimes in the cavity are inversely propor-
in the system by calculating two-time intensity correlationtional to the loss rates of the input mirror, the time spent in
spectra of the output fields. It was shown that sub-Poissoniaffie cavity is decisive for the level of nonclassical correla-
correlations were present in the system, especially when coriions of the output fields; the field with the shortest time
sidering the sum or difference of the field intensities fromSpent in the cavity displays the strongest nonclassical corre-
each Waveguide |mp|y|ng Strong twin-beam Corre|ations_|ati0ns. The fact that a |0ng interaction time tends to deStroy
This nonclassical antibunching effect is a true manifestatiothe nonclassical correlations have also been observed in

of a quantum behavior and was observed mainly in the folPropagation setups. Specifically, Olsenal. [50] showed
lowing three cases: that in propagation SHG the presence of quantum fluctua-

(1) Close to bistable turning points the strongest viola-tions caused a dramatic revival of the FH after a certain

tions of the standard quantum limit were observed in thePropagation length, causing the variance to go above shot-
spectrum atw=0, corresponding to correlations at infinite Noise level.

time. In the limit of y<1, perfect noise suppression could be We stresg that the results presented here were very robust
obtained in the sum of the FH intensities, implying perfectt0 changes in the parameters. Thus, large parameters areas
twin-beam anticorrelations. This was also observed in th&Xist, where strong nonclassical behavior can be seen. This is
single waveguide model, when equivalent detunings wer€&SPecially important to stress for the coupling parameters,
introduced. since they are not so easily controlled experimentally.

(2) Close to threshold for self-pulsing behavior strong \We investigated only the symmetric state of the system,
twin-beam correlations were observed botlwat0 and also  and a future study of the stability, dynamics and nonclassical
at values ofw coinciding with the oscillation frequency of Properties of the asymmetric states is relevant. In this con-
the emerging instability. Thus, the correlations here antici{€Xt, we should also mention that the coupling between the
pate the behavior above the threshold analogously to the idé4aveguides chosen here was conservatimeaginary cou-
of a quantum imag@49], where the spatial modulations are Pling in the Langevin equatiopswhile it could also have
encoded in the correlations below threshold while the averP&en dissipative(rea) or a combination(compley. This
age intensity remains homogeneous. _hlghly depends o_n.t'he actual setup, and a future s;udy should

(3) Excellent sub-Poissonian correlations were observediclude the possibility of a general complex coupling.
close to transitions from symmetric to asymmetric steady
states, which is a wholly unique transition to the dimer. This ACKNOWLEDGMENTS
instability is closely related to the near field of a modulation-
ally unstable system in presence of diffraction; the dimer Financial support from Danish National Science Research
sites could be thought of as neighboring near-field pixelsCouncil Grant No. 9901384 is gratefully acknowledged. We
Variances down to 3% of the shot-noise level were observethank Pierre Scotto, Roberta Zambrini, Peter Lodahl, Jens
in the the difference of the FH fields, implying nearly perfect Juul-Rasmussen, Mark Saffman, and Ole Bang for fruitful
twin-beam behavior. The correlations were particularlydiscussions. Y.G. thanks MIDIT and Informatics and Math-
strong when the FH coupling strength was much larger thagmatical Modelling at the Technical University of Denmark
the SH and when the FH loss rate was much larger than thior financial support.

SH loss rate.
) Itis worth”not_ln_g t?_at trf1e twm—bzam correla}_tlons reportte%d APPENDIX A: THE QUANTUM-TO-CLASSICAL
ere were all originating from the dimer coupling across the CORRESPONDENCE

waveguides; while each field was created individually from
the nonlinear interaction in the corresponding waveguide, the In this section, we show how the master equatibhis
coupling between the waveguides gave rise to the strongonverted into an equivalent partial differential equation by
nonclassical twin-beam correlations. Hence, the nonclassicaxpanding the density matrix in coherent states weighted by
correlations arise not because the photons are twins, buat quasiprobability distributioi36,37]. In this distribution,
rather because they are brothers. the operators are replaced by equivalemtumbers, where
Common for all these cases was that distinctively stronghe particular correspondence between these depends on the
nonclassical correlations were observed in parameter regimesdering of the operators. In the case where only up to
where two types of instabilities were competing. This wassecond-order derivatives appear in the corresponding partial
observed in self-pulsing areas close to bistable and asymmadifferential equation, the equation is on Fokker-Planck form
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allowing equivalent sets of stochastic Langevin equations tetween operators and numbers has been established as
be found. A—a and AT—a*. The c-number averages may now be
We are now left with a choice of probability distribution, calculated as, e.g.,
be it either theP, Wigner orQ distribution giving normal,
symmetric or antinormal averages, respectively. The aim of
this paper is to calculate two-time correlation spectra outside
the cavity, and in order to do this most conveniently, the
moments Of the intracaVity fleldS must be t|me and norma”yshowing that thec-number averages are influenced by the
ordered, cf. the discussion in Sec. IV. Since thechoice of ordering throughV(a).
mally ordered averages needed, this is the favorable repre-
sentation in this context. As will be explained later, we use x(z) . (9;)
the Wigner representation for the numerical simulations, and, 5 " D(Z)E :
therefore, we now provide a general way of deriving the
QPD equations. ) -~
The approach we use is to introduce a characteristi®ith dyp being governed by the master equatigh We now
function to differentiateD (z) with respect to, e.gz and rearrange to

X(2)=THD(2)p], (A1) 9¢

(a* )= f d?aW(a)a* a,

(A5)

*

-+ 5 |Dy(2). (A6)

so  is the trace over a displacement operdd¢z) acting on ATf)S(Z) =
the density matrixi.e., the expectation value @f(z)]. The

tzhoice of ordering I’lOYV amou_nts to choosing the ordering Otl'he right-hand side of EqA5) is evaluated using EGA6)
D(2). In the symmetric ordering and the similar other expressions. Equatiab) is then Fou-
D(z)=e?A -ZA (A2)  rier transformed according to E¢A4), assuming the char-
acteristic function is well behaved, to give the equation gov-
wherez is a complex number describing the amplitude of aerning the time evolution ofV(«).

coherent field, and\ is a boson operator. The normally and  Choosing the normally ordered displacement operator

antinormally ordered displacement operators are given by Eq.(A3a) the equation for the Glauber-Sudarshan
R i P-representation is derived, which is on Fokker-Planck form.
f)n(z):ezA*e*Z*A, (A3a) However, due to problems with negative diffusion in quan-
tum optics the generalizeB-distributions[51,52 are nor-
f)a(z):efz*AezAAT_ (A3p)  mally used instead, where the problems are surpassed by

doubling the phase space. We will use the positive
The QPD is now given as a Fourier transform of the characP-representation, which can be derived by replacingall

teristic function —>a'J-T and ,BJ?*—>,BjT in the Fokker-Planck equation of the
5 o Glauber-SudarshaR-representation. This means thaf is
W(a)=j d“zx(z)e : (A4 now an independent complex quantity instead of being the

complex conjugate of; . The Fokker-Planck equation using
where the integration measut®z means integration over the positive P-representation corresponding to the master
the entire complex plane. From this relation an equivalencequation(5) is then

MWo(x) [ 0 . . oL .
=17 lawy—18)+id1B1— kaja,—E o]+ —<lai(y1+161) 13181~ kara; — & 4]
d . . K a | 4 . K4 d . .
+r“2 a2(72_|52)+|\]2,32+§al "‘E C“2(7’2+|52)_|‘32,32“‘5“1 +(9_ﬁ1[/31(71_|51)+|~]1011

T J ot ; P t J . ; K 2
- K,B1:82_€p,b]+(?_IBT[B1( y1tid) —idia;— kBB~ Eppl+ —[,32(72— 195) +idya,+ 5131}
1

B2
L5 [BT( 18y —idyal— = B2|+ = A 2,3+ > 81 bW (x) (A7)
— i8,)—idoa— = S| —at —sadt — B+ —— X),
&,8; 272 2 2027 5 P2 2 &ai 2 r?aIz 2 ﬂﬁi 2 J Jlrz 2 n
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where thec-number equivalents of the operators d@& A'}—{a;,a]} and {B; Bl}—{g;.B]}, andx represents the
c-number states

x={ay,a},ay,a},B1.B1.82.55}

The numerical simulation of the positiie-representation has been reported as very difficult, mainly due to divergent
trajectorieg 53], cf. the discussion in Appendix B. Therefore, we choose to use the Wigner representation for the numerical
simulations, obtained by using the symmetric displacement ope@&®r The time evolution of the Wigner distribution is
governed by

IWs(x) [ a _ . p _ Ko, 9 _ .
e (9711[(71"51)“1_Ka1a2+|~]1,31_5p,a]+(9712 (v2—i8)art S ai+1dzB; +(9_[31[(71—|51)B1_KB1,32
+idpa—Eypl+ J [( 18,) Bt = B2t idpay| + 2 ” + 7
iJyey— — | (yo—i S B5+idas|+ =
1&17 Cph 9, Y2 2)P2T 5 P1 2002 2 ﬂal&a’l‘ (9181(9/3,{
vol| 7 &2 k[ & 33
+ = + +— > +— +c.c.p Wy(x), (A8)
2\ dazdas  aB,aB3| A\ daldas  IBIIBS

where the c-number equivalents of the operators arevolves an approximation that is not necessary iffher the

{Ai ,AJ-T}<—>{aj ot} and{éj ,éj’f}(_){lgj B}} and Q-representation are used. The advantage of the truncated
Wigner Langevin equation&) is that the noise is additive,
x={ay,af ,ay,a5 ,B1,6% .B2.65}. as opposed to the the multiplicative noise of the

Q-representationwhere the noise for the quantum SHG
Due to the third-order derivatives ECA8) is not -in Fokker- model poses serious limits on the parameter S@h&h and
Planck form, a problem we address in Appendix B. Note thathe p.representation. For the-representation, we are forced
the +c.c. term(denoting the complex conjugatat the end o yse the generalized representations in order to avoid nega-
applies to the entire equation. _ tive diffusion in the Fokker-Planck equation. Since this
The connection from the QPD equations to the StQCh?St_'Ehoice implies doubling of the phase space,dmimbersy;
Langevin equations can be made if the QP.D equation is "Mnda! are no longer each others complex conjudatdy on
Fokker-Planck form, which for a system with cnumber ! . :
statesx. is [37] average and the respectlye noise terms are not corre_lated to
! each other, cf. Eq10). This may lead to divergent trajecto-
ries where the convergence is extremely slow, and is the
Djk(x) { W(x), major reason for us avoiding a numerical implementation of
the positiveP equations. The Wigner equations, on the other
(A9) hand, have no problems in this direction.
Using Ito rules for stochastic integration the equivalent set of 1 he drawbacks to use the Wigner equations are first of all
Langevin equations is that we ha\{e to neglect the third-order terms of the Wigner
QPD equationA8) to get it on Fokker-Planck form so the
X equivalent Langevin equatiorf$10) may be obtained. It is
E=A1(X)+Wj(t), (A10)  uncertain what the implications of this approximation are,
however in many cases no major differences have been ob-
served between simulations of the truncated Wigner equa-
tions compared to exact positie-or Q equationg47,18|.
On the other hand in Ref40] so-called quantum jump pro-
(W (HW(t"))=Dj(X) 8(t—t'). (A11)  cesses in the degenerate OPO above threshold are shown to
produce significant differences between the truncated Wigner
We note that ifD depends o the noise is labeled multipli- and the positivé>-representation. In our case the third-order
cative which is the case for the positiREq. (A7), other-  terms areO(«?), while the other terms ar@(«?) or lower.
wise it is additive as it is for the Wigner E¢A8). And because of the weak nonlinear coupling the effect of the
third-order terms is weak, justifying the truncation. Another
drawback to the Wigner representation is that the intracavity
averages are symmetrically ordered, and these cannot be re-
The choice of using the Wigner representation for the nuwritten to time and normal ordering since the intracavity
merical simulations is not immediately apparent, since it incommutator relations are not known fo£t’ (only the out-

m

AW(X) 3 1 &8 P
ot =1 9%; A0 2 k=1 9Xj0%

wherew;(t) are Gaussian white noise terngscorrelated in
time according to the diffusion matriR

APPENDIX B: NUMERICAL SIMULATIONS
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put f_|elds have well-defined correlat|_ons h)eriéh|§ means ANjA,out(t)ENﬁout(t)—<NjAour>s

that in order to compute the output fields at a given time

we must use-number equivalents of E¢23), and here the =Y oulAA'T oul(t)+(a'0 out)*AAj oul ),
Gaussian white noise part of the input field is an ill-defined b b . '
instantaneous quantity. Instead, the output fields of the nu- (B3)

merics are calculated by using the fact that the integral of gyith subscripts to indicate that the average is symmetric and
stochastic term is well defined. By integrating over a timewe have neglected higher-order terms in the fluctuations. Us-
window (which we denotelt,,) and calculating the average, ing this expression, the two-time correlation functi@?) is

as described in Ref54], we may obtain the output fields with a symmetric ordering of the operators to leading order
from Eq. (23).

We use the Heun methd®5] to numerically solve the Cgfék( 7)=(ANP (D) = ANP (D),
Langevin equations for the intracavity fields and to evaluate A .
the output fields, and a random number generfs6t for AN ou{t+ AN o (t+7))s. (BA)

generating the Gaussian noise terms. The time step was set to.l_he symmetrice-number correlations of the output field
At=0.001 and checked to be stable. The size of the tim(:f‘Iuctuatio)%s are now calculated in the numerical si?nulations
window for calculating the output fields was varied betweenOf the dimensionless Wigner Langevin equatiof as
At,,=40At—200At according to the resolution needed for AWS(0) [AWS( 1T wh 9 9 q

the individual spectra. Finally, we set=10°, which is a (Aw™(0) [AW(7)]")s where

Eypi]cal value for the cavity configuration considered here AwS=[AA;,AAY AA, AA% ,AB;,AB? AB,,AB3]".

57].

The averages calculated using the output fields of the nulhe spectral matri6*(w) of fluctuations is now straightfor-
merics correspond to symmetrically ordered averages sino&ardly given by the Fourier transform of these correlations,
they are calculated from the Wigner Langevin equations. Irand the correlationé84) may now be calculated in the same
order to relate these averages to the normally ordered avemanner as shown in Sec. IV with the shot-noise level
ages of the spectra in Sec. IV, the output commutator rela- Conm (I A 124 B 12yt
tions (24) are used to rewrite the output correlations. The sn= ([ Aoutj| *+ [ Bout Ins =
classical steady states of the output fields are found from thgsing that the normalization of the output fields are the same
average of Eq(23) by taking the input fluctuation to be zero as the one taken for the input fields in E410. Note that

on average the shot-noise level, here expressed in the symmetric aver-
B ages in the Wigner Langevin equation, is identical to the
Frou= N2y1F1t /N2y, (Bla shot-noise level expressed in averages from the podive-
i i 2901, isi -
Foou= V272Fs,  F=al B, (B1b) equations(35), since| Ay j|*=27l;. This is due to the ap

proximation made in EqB3).

where a? and B? are the unscaled Steady states. Assuming In the analytical treatment in Sec. IV we used that in the

that the output fields are fluctuating around the output stead§Pectral matrixS(w) certain symmetries are present, so in
states act only approximately one-third of the 64 correlations were

needed to obtain the results presented there. In a numerical
AAj,out:Aj,out_ a? out (B2)  simulation this is only approximately valid in the limits of
’ long integration times and large correlation times. Much bet-
we introduce the photon number fluctuation operator forter results are obtained faster if the spectra are calculated
waveguideA as directly from the full 8<8 matrix S*( w).
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