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Nonclassical statistics of intracavity coupledx „2… waveguides: The quantum optical dimer
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A model is proposed where twox (2) nonlinear waveguides are contained in a cavity suited for second-
harmonic generation. The evanescent wave coupling between the waveguides is considered as weak, and the
interplay between this coupling and the nonlinear interaction within the waveguides gives rise to quantum
violations of the standard quantum limit. Pronounced twin-beam behavior is observed as almost complete noise
suppression in the difference as well as the sum of the waveguide intensities close to bistable transitions,
self-pulsing instabilities as well as the transition from symmetric to asymmetric states. The correlations imply
strong correlations and anticorrelations induced by the coupling. The violations of the standard quantum limit
are particularly strong when two instabilities are competing. The results are based on the full quantum Lange-
vin equations derived from the boson operator Hamiltonian and including cavity damping effects. The intensity
correlations of the output fields are calculated semianalytically using a linearized version of the Langevin
equations derived through the positive-P representation. Confirmation of the analytical results are obtained by
numerical simulations of the nonlinear Langevin equations derived using the truncated Wigner representation.

DOI: 10.1103/PhysRevA.67.043802 PACS number~s!: 42.50.Dv, 42.50.Lc, 42.65.Sf, 42.65.Wi

I. INTRODUCTION

The x (2) nonlinear materials have been the subject of
various investigations in recent years. Using a cavity setup
the weak nonlinearities can be resonantly amplified, and
complex spatiotemporal behavior has been observed from a
classical point of view, both theoretically@1–5# and recently
also experimentally@6–8#. Moreover, due to the quantum
fluctuations of light many interesting nonclassical effects
have been reported, such as squeezed light@9# and sub-
Poissonian light@10#, both theoretically@11,12# and experi-
mentally @13,14#. The interplay between the classical spatial
instabilities and the quantum fluctuations in the system has
been investigated intensively lately@15#, a study devoted to
characterizing the mode interaction on the quantum level.

We consider the case of second-harmonic generation
~SHG!, where the photons of the pump field~fundamental
photons! are up-converted in pairs to second-harmonic pho-
tons of the double frequency. The model we propose in this
paper consists of two quadratically nonlinear waveguides
placed in a cavity that resonates both the fundamental and
second harmonic, and we take linear coupling between the
waveguides into account. This is the simplest mode coupling
model obtainable. The question is how the coupling between
the waveguides affects the cavity dynamics, and in particular
we shall focus on the nonclassical behavior of the system.

The name proposed for this model, the quantum optical
dimer, originates from the numerous investigations made
about discrete site coupling in various systems, such as con-
densed matter physics and biology, see Ref.@16# for a gen-
eral treatment of discrete systems. Thus, the name dimer im-
plies that coupling between two discrete sites are being taken
into account. For a single waveguide~or site!, we shall use
the name monomer, a case corresponding here to a bulk non-
linear medium and neglecting diffraction.

It has been shown that in the SHG quantum optical mono-
mer excellent squeezing of the output fields is possible close

to a self-pulsing instability@12#, and nonclassical effects in
SHG have been verified experimentally@14#, and even
shown to persist above the threshold of the instability@17#.
Also in the presence of diffraction strong correlations exist
between different spatial modes in the presence of a spatial
instability @18#, including strong correlations between the
fundamental field and the generated second-harmonic field as
well as spatial multimode nonclassical light.

As we shall show the quantum optical dimer also displays
strong nonclassical intensity correlations, and that the linear
coupling across the waveguides plays a decisive role. The
model has three types of instabilities, namely self-pulsing,
bistability and a transition from symmetric to asymmetric
states. It is remarkable that particularly strong nonclassical
correlations are observed when two of these instabilities
compete. Specifically, when taken close to a self-pulsing or
bistable regime the symmetric to asymmetric transition has
nearly perfecttwin-beambehavior, so the difference of the
fundamental intensities displays almost no fluctuations. The
twin-beam correlations were first shown in the optical para-
metric oscillator~OPO! @19,20#, where the signal and idler
photons of the twin-fields are generated simultaneously from
the pump field, and the intensity difference shows correla-
tions below the standard quantum limit. However, the twin-
beam effect observed in the dimer originates from photons
created in different waveguides with only the coupling to
link them. Thus, the photons are strictly speaking not twins,
but merely ‘‘brothers.’’ The twin-beam effect is also ob-
served near bistable turning points where complete noise
suppression is observed in the sum of the fundamental inten-
sities ~implying strong anticorrelations across the
waveguides!, the strongest violations occurring in the limit
where the fundamental input coupling loss rate is much
larger than the second-harmonic one. The fact that bistability
gives rise to highly nonclassical effects turns out to also hold
for the SHG monomer, and has to our knowledge not been
observed before; usually the self-pulsing transition has been
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used to observe violations of the standard quantum limit,
which we also observe in the dimer. The bistable transition
has previously been observed to produce nonclassical states
in other systems such as dispersive and absorptive optical
bistability @12,21# and Raman lasers@22#.

A closely related optical model is spatially coupled lasers
@23#, where a single laser medium is pumped by two beams
spatially separated. Waveguiding is achieved by thermal
lensing, in which the temperature-dependent refractive index
of the laser medium creates a guiding effect, and the cou-
pling strength is controlled by the distance between the pump
profiles. The quantum noise induced correlations in these
systems have not yet been reported to beat the standard
quantum limit when Kerr-type nonlinearities are considered
@24,25#, except when the coupling arises solely due to ini-
tially correlated noise terms of the pumps@26#.

The cavityless setup of coupledx (2) waveguides has pre-
viously been investigated, both from a classical and a
quantum-mechanical point of view. In the classical model of
waveguide arrays, the focus of attention has been on soliton
behavior originating from the coupling@27#, whereas the
cavityless dimer was shown to produce chaotic states away
from the integrable limit~where second-harmonic coupling
is neglected! @28#. The quantum behavior of the cavityless
dimer has been investigated by the group of Perinaet al. ~for
a review see Ref.@29#! giving the name ‘‘nonlinear coupler’’
to the model. They have investigated both co- and counter-
propagating input fields in parametric oscillation and, e.g.,
the transfer of quantum states from one waveguide to the
other.

The model presented here is also closely related to the
dynamics of coupled atomic and molecular Bose-Einstein
condensates~BECs! @30,31#, where the photoassociation of
an atomic condensate may produce a molecular condensate
with an atom-molecule interaction that is reminiscent of the
interaction between the fundamental and second-harmonic
photons in SHG@32#. The opposite process where the pho-
todissociation of a molecular BEC creates an atomic BEC
has been shown to produce squeezed states@33#, a model that
has the quantum optical equivalent in the OPO. If an analogy
should be drawn between the quantum optical dimer pre-
sented here and BEC it would consist of placing two such
coupled molecular-atomic BECs in separate quantum wells.
Thus, evanescent tunneling of the wave functions between
the wells would introduce the dimer coupling, similar to
what is done in Ref.@34# for a normal BEC.

We should finally stress that the cavity setup discussed in
the present work gives rise to two major differences to the
work in cavityless waveguides as well as for the BEC. First
of all, the cavity introduces losses in the model through the
input mirror, and second, external pump fields appear in the
equations acting as forcing terms.

The paper is structured as follows. In Sec. II, the model is
introduced, and the stochastic Langevin equations are de-
rived from the full boson operator Hamiltonian. Also, we
discuss the allowed values of the coupling constants. In Sec.
III, the linear stability of the Langevin equations are investi-
gated, and the bifurcation scenario of the model is discussed.
In Sec. IV, we discuss the framework for the two-time pho-

ton number correlations of the output fields, and the semi-
analytical spectral variances are derived in the linearized
limit. Section V is devoted to the results of the analytical
calculations as well as the numerical simulations. A summary
is made in Sec. VI where we also discuss the results ob-
tained. Appendix A shows details about the derivation of the
quasiprobability distribution equations used to connect the
master equation for the quantum Hamiltonian with the clas-
sical looking stochastic Langevin equations. The numerical
method is discussed in Appendix B.

II. THE MODEL

We consider the setup shown in Fig. 1. Twox (2) nonlinear
waveguides are contained in a cavity with a high-reflection
input mirrorM1 and a fully reflecting mirrorM2 at the other
end. The cavity is pumped at the frequencyv1 and through
the nonlinear interaction in the waveguides SHG creates
photons of the frequencyv252v1. The cavity supports a
discrete number of longitudinal modes, and we will consider
the case where only two of these modes are relevant, namely,
the modev1,cav closest to the fundamental-harmonic~FH!
frequency andv2,cav closest to the second-harmonic~SH!
frequency. Using the mean-field approximation, thez direc-
tion, in which the pump beam propagates, is averaged out.
This approach is justified as long as the losses and detunings
are small. We furthermore assume perfect phase matching in
the crystal. The waveguiding implies that diffraction in the
transverse plane may be neglected. LetÂ1(t) and B̂1(t)

@Â2(t) and B̂2(t)] denote the FH~SH! intracavity boson
operators of waveguideA andB, respectively. They are nor-
malized so they obey the following equal time commutation
relations:

@Ôi~ t !,Ôj
†~ t !#5d i j , i , j 51,2, Ô5Â,B̂, ~1!

FIG. 1. The setup. Two nonlinear waveguidesA andB inside a
cavity pumped by a classical field.
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while @Âj (t),B̂j
†(t)#50. The system is modeled through the

Hamiltonian

Ĥ5ĤA
sys1ĤB

sys1ĤAB , ~2!

where the system Hamiltonians in the frame rotating with the
pump frequency are given by

ĤO
sys52\d1Ô1

†Ô12\d2Ô2
†Ô21

i\k

2
~Ô1

†2Ô22Ô1
2Ô2

†!

1 i\~Ep,OÔ1
†2Ep,O* Ô1!, O5A,B. ~3!

The detunings from the cavity resonances are given byd j
5v j2v j ,cav, k is proportional to thex (2) nonlinearity and
Ep,O are the external pump fields at the FH frequency of the
individual waveguides@35#, here treated as classical fields.
The coupling between the waveguides is modeled as over-
lapping tails of evanescent waves so it may be assumed
weak, implying we can describe it as a linear process

ĤAB5\J1~Â1B̂1
†1B̂1Â1

†!1\J2~Â2B̂2
†1B̂2Â2

†!. ~4!

J1 and J2 are the cross-waveguide coupling parameters of
the FH and SH, respectively. The time evolution of the re-
duced system density-matrix operatorr̂ in the Schro¨dinger
picture is then given by the master equation@36,37#:

]r̂

]t
52

i

\
@Ĥ,r̂ #1~ L̂1,A1L̂2,A1L̂1,B1L̂2,B!r̂. ~5!

The continuum of modes outside the cavity is modeled as a
heat bath in thermal equilibrium, and the coupling to these
modes has been included through the Liouvillian terms

L̂ j ,Or̂5g j~@Ôj ,r̂Ôj
†#1@Ôj r̂,Ôj

†# !

1g j n̄ j
th~@Ôj r̂,Ôj

†#1@Ôj
† ,r̂Ôj # !. ~6!

These terms describe the losses of the fields through photons
escaping the cavity, and simultaneously they model fluctua-
tions entering the cavity through the input mirror, a conse-
quence of the dissipation-fluctuation theorem@38#. The loss
rates of the input coupling mirror are given byg j , whereas
the termsn̄ j

th5(e\v j /kBT21)21 are the mean number of ther-
mal quanta in the external bath modes atv j . We shall here
neglect thermal fluctuations by setting the bath temperature
T50 yielding n̄ j

th50. First of all, this is a good approxima-
tion for optical systems since here\v@kBT, and second, we
may hereby focus on behavior solely due to the inherent
quantum fluctuations of light.

The master equation~5! is difficult to solve as it is, there-
fore, we apply the now standard technique of expanding the
density matrix in a basis of coherent states weighted by a
quasiprobability distribution~QPD!. The details of this
quantum-to-classical description are given in Appendix A,
and the result is a partial differential equation of the QPD.
This QPD equation depends on the choice of ordering of the
corresponding quantum mechanical averages. Equation~A7!

is the QPD equation using the positive-P distribution giving
normally ordered averages, which we will use for the linear-
ized analysis. For the numerical implementation, the Wigner
distribution is used to obtain Eq.~A8!, in which symmetric
averages are calculated.

If the QPD equations~A7! and ~A8! are on the Fokker-
Planck form~A9!, an equivalent set of stochastic Langevin
equations~A10! can be found to by using Ito rules of sto-
chastic integration@39#. For the Wigner QPD equation~A8!
this is not the case because of the third-order terms, however
these terms, which have been shown to model quantum jump
processes@40#, are generally neglected and the resulting
Fokker-Planck equation turns out to be a good approxima-
tion, to the original problem. Using this approximation the
normalized Langevin equations for the Wigner QPD equa-
tion are

Ȧ15~211 iD1!A11A1* A22 iJ1B11A2Ain,1~ t !, ~7a!

Ȧ25~2g1 iD2!A22 1
2 A1

22 iJ2B21A2gAin,2~ t !, ~7b!

Ḃ15~211 iD1!B11B1* B22 iJ1A11A2Bin,1~ t !, ~7c!

Ḃ25~2g1 iD2!B22 1
2 B1

22 iJ2A21A2gBin,2~ t !, ~7d!

where the dot denotes derivative with respect to time. The
fields $Aj ,Aj* % and $Bj ,Bj* % are normalized equivalent

c-numbers to the operators$Âj ,Âj
†% and$B̂j ,B̂j

†%. The input
fields are describing the pump field entering the cavity
through the input mirror as well as the noise coupled in here
according to the Liouvillian terms~6!

F in,1~ t !5
E

A2
1jF1

~ t !, F in,2~ t !5jF2
~ t !, ~8a!

^jFi
* ~ t !jF j

~ t8!&5d i j

d~ t2t8!

2ns
, ~8b!

with F5A,B. All other correlations are zero. The positive-P
QPD equation~A7! is on Fokker-Planck form so no approxi-
mations are needed. The equivalent set of Langevin equa-
tions is given by Eq.~7! by replacing Aj* →Aj

† and Bj*
→Bj

† , as well as the equations for the fields

Ȧ1
†5~212 iD1!A1

†1A1A2
†1 iJ1B1

†1A2Ain,1
† ~ t !, ~9a!

Ȧ2
†5~2g2 iD2!A2

†2 1
2 ~A1

†!21 iJ2B2
†1A2gAin,2

† ~ t !,
~9b!

Ḃ1
†5~212 iD1!B1

†1B1B2
†1 iJ1A1

†1A2Bin,1
† ~ t !, ~9c!

Ḃ2
†5~2g2 iD2!B2

†2 1
2 ~B1

†!21 iJ2A2
†1A2gBin,2

† ~ t !.
~9d!

The fields$Aj ,Aj
†% and $Bj ,Bj

†% are normalized equivalent

c-numbers to the operators$Âj ,Âj
†% and$B̂j ,B̂j

†%. The input
fields for the positive-P Langevin equations are
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F in,1~ t !5
E

A2
1jF1

~ t !, F in,1
† ~ t !5

E

A2
1jF1

† ~ t !,

~10a!

F in,2~ t !50, F in,2
† ~ t !50, ~10b!

^jF1
~ t !jF1

~ t8!&5
F2d~ t2t8!

2ns
, ~10c!

^jF1

† ~ t !jF1

† ~ t8!&5
F2

†d~ t2t8!

2ns
, ~10d!

with F5A,B, and again all other correlations are zero. The
doubling of phase space associated with the positive-P rep-
resentation~see Appendix A for details! implies thatj j

† is
uncorrelated toj j . Additionally it implies thatAj andAj

† are
independent complex numbers and only on average isAj

†

5Aj* .
The Langevin equations have been normalized by intro-

ducing the dimensionless variables

t̃ 5g1t, g5
g2

g1
, D j5

d j

g1
, ~11a!

Aj5
k

g1
a j , Bj5

k

g1
b j , ~11b!

Ain, j~ t̃ !5
k

g1
3/2

a in, j~ t !, Bin, j~ t̃ !5
k

g1
3/2

b in, j~ t !, ~11c!

j̃ j~ t̃ !5
k

g1
3/2

j j~ t !, E5
k

g1
2
Ep , J̃ j5

Jj

g1
, ~11d!

and the tildes have been dropped. The fieldsa j and b j are
the unscaledc-numbers, cf. Appendix A. We have further-
more introduced the dimensionless quantity

ns5k2/g1
2 . ~12!

This parameter sets the level of the quantum noise, cf. Eqs.
~8! and ~10!, and in the OPO it represents the saturation
photon number to trigger the parametric oscillation.

For simplicity, we have assumed real and equal pump
rates in both waveguidesEp,A5Ep,B[Ep . The consequence is
that the same input mirrors as well as intracavity paths are
used for both waveguides, implying identical detunings@41#
as well as losses for the FH fields and the SH fields, respec-
tively.

The coupling strengths between the waveguides are con-
trolled by J1 and J2, and it is relevant to consider what
values these may take. Figure 2 shows an instructive ex-
ample, where we consider symmetric step-index parallel pla-
nar waveguides with a core~cladding! refractive indexnco
(ncl). The weakly guiding limit is assumed wherenco.ncl .
Taking the FH field of waveguideA as example, the coupling
from waveguideB can be found by considering waveguideA
in isolation and taking the presence of waveguideB as a

weak perturbation. This approach assumes that the transverse
profile u(x) and propagation constantb of the modes in the
waveguides are left unchanged, and only the amplitude is
modified by the perturbation. The coupling constants of the
propagation equations of the waveguides are then found as
@42#

JA1B1
5

~nco
2 2ncl

2 !k1
2

2bA1

E
2d/22 l w

2d/2

dxuA1
~x!uB1

~x!, ~13!

wherek152p/l1 is the vacuum wavenumber of the FH, and
the mode profiles are assumed normalized so*2`

` dxu2(x)
51. Thus, Eq.~13! has the dimension per meter. Figure 2
shows the lowest-order modes of the isolated waveguides as
calculated for a realistic setup;u(x) andb are found through
a boundary value consideration. If only coupling between
modes of same order is considered, we haveJA1B1

5JB1A1

[J1
prop. Applying the mean-field approach@4# the coupling

parameters of Eqs.~7! is then given byJj5Jj
propLcav/t,

where Lcav is the length of the cavity, andt is the cavity
round trip time. From Eq.~11d!, the normalized coupling
parameter is found throughg15T1 /(2t) whereT1 is the FH
intensity transmission efficiency of the input mirror, so we
obtain @43#

J̃ j5Jj
prop2Lcav

T1
. ~14!

As a result of these considerations, we see that the SH
coupling parameter generally will be lower than the FH one.
This is clear from the calculated modes in Fig. 2, where the
SH modes~dashed! decay faster than the FH modes~solid!.
However, it is impossible to generally say how much weaker
and when the distance between the waveguides is decreased
the coupling parameters become closer to each other. Finally,
the actual values ofJ̃ j are highly sensitive to the specific
setup. Not only in terms of waveguide parameters~e.g., dis-
tance between guides, the modes in the guides!, but also on
independent parameters~cavity length, input transmission ef-
ficiency!. Using parameters from realistic setups~similar to
the cavity setup discussed in Ref.@5#! we obtained normal-
ized coupling parameters of up to 50, while still preserving
the assumptions of weak coupling as well as the mean-field

FIG. 2. Parallel planar waveguide setup shown in thex direc-
tion. The width of the waveguides isl w and the distance between
them isd. The transverse distributions of the lowest-order modes
for a realistic setup are shown calculated using a step profile of the
refractive index.
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limit. Finally, when coupling between the lowest-order
modes is considered we haveJj.0.

III. LINEAR STABILITY

In this section, the Langevin equations derived previously
are linearized and the linear stability is investigated to obtain
a bifurcation scenario in the classical limit where noise is
absent (ns→`). In this limit the Langevin equations from
the different representations give the same result, a natural
consequence from the fact that in the classical limit the op-
erators commute. Additionally, in Sec. IV we are going to
use the linearized equations with noise to derive analytical
results for the noise induced correlations. For this purpose, it
is more convenient to use normally ordered intracavity aver-
ages, as will be explained later, and this section will, there-
fore, only concern the positive-P Langevin equations. The
results of this section reveal both symmetric and asymmetric
steady states in the two waveguides, as well as bistable be-
havior and Hopf unstable solutions.

The linearization is particularly simple in thesymmetric
case. Here the steady states in the waveguides are identical,
so the FH steady states in waveguideA andB are equal and
equivalently for the SH steady states. The symmetric steady
states of the waveguides can be found from the monomer
equations, i.e., using the results of Ref.@3# and applying the
substitution D j→D j2Jj[dj . In the symmetric case, the

steady states are denotedAj5Bj[AĪ je
if j giving

E25 Ī 1
2 Ī 1/41~g2d1d2!

d2
21g2

1 Ī 1~d1
211!, ~15a!

Ī 25 Ī 1
2@4~d2

21g2!#21, ~15b!

f152arg„12 id11 Ī 1 /@2~g2 id2!#…, ~15c!

f252arg~2g1 id2!12f1 . ~15d!

We may linearize the positive-P Langevin equations~7!,
~9!, and ~10! around the symmetric steady statesAj5DAj
1Aj andBj5DBj1Aj @44# to get the matrix equation

Dẇ5ADw1
B

Ans

n~ t !, ~16!

whereDw is a vector of fluctuations

Dw5@DA1 ,DA1
† ,DA2 ,DA2

† ,DB1 ,DB1
† ,DB2 ,DB2

†#T,

andn(t) is a vector of Gaussian white noise terms correlated
as

^nj~ t !nk~ t8!&5d~ t2t8!. ~17!

The matrixA is block ordered into four 434 matrices

A5FAm Ax

Ax AmG , ~18!

with the diagonal cross-coupling matrix

Ax5diag@2 iJ1 iJ1 2 iJ2 iJ2#, ~19!

and the monomer matrix is

Am5F 211 id1 A2 A1* 0

A2* 212 id1 0 A1

2A1 0 2g1 id2 0

0 2A1* 0 2g2 id2

G .

~20!

The diffusion matrix is also diagonal

D5diag@A2 A2* 0 0 A2 A2* 0 0#, ~21!

andD5BTB.
The classical stability of the system is found by solving

the eigenvalue problemAv5lv, which was done inMATH-

EMATICA. The analysis is characterized by two cases, either
when one physical solution exists to the closed problem
~15a!–~15b!, or when the system is bistable and three physi-
cal solutions exist~in this case each solution must be ana-
lyzed individually!. The stability of the steady states may
now either change with the critical eigenvaluel j ,c having
Im(l j ,c)50 at the critical pump valueEsym, which means
that the symmetric state of the system is no longer stable.
When this happens a new state withAjÞBj is stable instead,
and the actual values of these new steady states are not easily
calculated. We will not address the stability of the system
beyond the asymmetric transition any further in this paper,
however the transition to the asymmetric state will be used to
look for nonclassical correlations. The other possibility is
that the system changes stability with Im(l j ,c)Þ0 at the
critical pump valueESP, which corresponds to a Hopf insta-
bility leading to self-pulsing temporal oscillations.

The system is well characterized by the relative loss rate
g, which in the SHG monomer was shown to determine the
degree of squeezing as well as which field the best squeezing

FIG. 3. Bifurcation diagram showing the primary instability for
D15D25D, g50.1, andJ251.0, as the pumpE is changed. In the
bistable area, the stability of the upper branch is indicated.
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was observed@12#. Following the simple layout of the cavity
shown in Fig. 1 implies thatD15D2[D @41#. The bifurca-
tion scenario in the$J1 ,D% space forJ251.0 is shown in
Fig. 3, which displays a rich variety of instability regions.
These can be accessed by using the pumpE as bifurcation
parameter. ForD,1, bistable behavior is observed, and the
upper branch may be both Hopf unstable as well as asym-
metrically unstable as indicated. ForD.1, a large Hopf re-
gion is seen, while forJ1 large, asymmetric states are ob-
served.

Settingg51 a similar scenario as forg50.1 is observed:
On resonance self-pulsing symmetric states dominates, while
bistable solutions may be seen forD,21 and asymmetric
states appear whenD.0. Forg510, the self-pulsing insta-
bility dominates and asymmetric solutions only appear when
detuning is introduced and simultaneous large values ofJ1
and J2 are chosen. Bistable solutions are not seen here ex-
cept for very large coupling strengths, a consequence of the
criteria for bistability„Eq. ~6! in Ref. @3#…

ud2u~ ud1u2A3!

A3ud1u11
.g, d1d2.0. ~22!

All these results indicate that the most diverse bifurcation
scenario is wheng<1.

IV. PHOTON NUMBER SPECTRA

The linearized Langevin equation for the positive-P rep-
resentation can be used to analytically calculate the spectrum
of fluctuations in the stationary state, provided that the fluc-
tuations are small. These intracavity fluctuation correlations
can be directly related to the output correlations by using the
input-output theory of Gardiner and Collett@45#. We will
only present results in the case where the symmetric steady
states are stable.

The input fieldsÔin, j (t) coupled into the cavity through
the input mirror are posing an instantaneous boundary con-
dition for the output fields

Ôout,j~ t !5A2g j Ô j~ t !2Ôin, j~ t !, Ô5Â,B̂. ~23!

It should be stressed that in this equationg j is only the loss
rate of the input mirror, and does not include additional ab-
sorption losses of the cavity that might otherwise have been
included in the Langevin equations. Also note that the input
operator is in the FH taken as a both the classical pump as
well as the fluctuations around this classical level originating
from the heat bath interaction@so really an operator equiva-
lent of the Langevin input fields from Eqs.~8! and~10!#. The
fields outside the cavity obey the standard free field commu-
tator relations

@Ôout,j~ t !,Ôout,k
† ~ t8!#5d jkd~ t2t8!, ~24!

and

@Ôin, j~ t !,Ôin,k
† ~ t8!#5d jkd~ t2t8!, ~25!

while all other commutators are zero. We want to express
correlations of the out fields entirely on correlations of the
intracavity fields, hence we want to get rid of terms involv-
ing Ôin, j (t). Using arguments of causality it may be shown
that this can only be done if time and normally ordered cor-
relations are considered@45#, e.g.,

^Âout,j
† ~ t !,Âout,j~ t8!&52g j^Âj

†~ t !,Âj~ t8!&, ~26a!

^Âout,j~ t !,Âout,j~ t8!&52g j^Âj~max@ t,t8# !,

Âj~min@ t,t8# !&, ~26b!

which precisely implies time and normal order of the corre-
lations. Since this is exactly what theP-representation com-
putes the intracavity operator averages on the right-hand side
of Eq. ~26! may be directly replaced byc-number averages
from theP representation.

The intensities of the output beams may be found from
the photon number operatorN̂out,j

O 5Ôout,j
† Ôout,j . In a photon

counting experiment two-time correlations of the intensities
may be calculated as

CAjBk

(6) ~t![^N̂out,j
A ~ t !6N̂out,k

B ~ t !,N̂out,j
A ~ t1t!6N̂out,k

B ~ t1t!&

5~^N̂out,j
A &1^N̂out,k

B &!d~t!1^:N̂out,j
A ~ t !

6N̂out,k
B ~ t !,N̂out,j

A ~ t1t!6N̂out,k
B ~ t1t!:&

52~g j^N̂j
A&1gk^N̂k

B&!d~t!

14^:dN̂AjBk

(6) ~ t !,dN̂AjBk

(6) ~ t1t!:&, ~27!

where the notation̂ : :& indicates a time and normally or-
dered average. In the second line we have used the commu-
tator relations~24! to rewrite to normal order, while the last
line follows from Eq.~26!. We have also introduced

dN̂AjBk

(6) ~ t !5g j N̂ j
A~ t !6gkN̂k

B~ t !, N̂j
O5Ôj

†Ôj , ~28!

and calculated the variance as^S,T&[^ST&2^S&^T&.
It is more convenient to investigate these two-time corre-

lations in the Fourier frequency domain using the Wiener-
Khintchine theorem@38#

VAjBk

(6) ~v!5E
2`

`

dteivtCAjBk

(6) ~t!

52~g j^N̂j
A&1gk^N̂k

B&!

14E
2`

`

dteivt^:dN̂AjBk

(6) ~ t !,dN̂AjBk

(6) ~ t1t!:&

~29a!

[CSNV̄AjBk

(6) ~v!. ~29b!

Here we have introduced the spectrum normalized to shot-
noiseV̄AjBk

(6) (v), and the shot-noise level given by

BACHE, GAIDIDEI, AND CHRISTIANSEN PHYSICAL REVIEW A67, 043802 ~2003!

043802-6



CSN52~g j^N̂j
A&1gk^N̂k

B&! ~30!

is with this normalization unity. We will in the following
implicitly with a bar denote spectra normalized to shot noise.
The shot-noise level is equivalent to the standard quantum
limit, i.e., the limit between classical and quantum behavior.
Hence if Âj and B̂k are coherent states the variance will be
V̄AjBk

(6) (v)51. A complete violation of the shot-noise level

V̄AjBk

(6) (v)50 implies that no fluctuations are associated with

the measurement of the intensitiesN̂out,j
A 6N̂out,k

B . The corre-
lations between the fields of the same waveguide are

CAj
~t![^N̂out,j

A ~ t !,N̂out,j
A ~ t1t!&

52g j^N̂j
A&d~t!14g j

2^:N̂Aj
~ t !,N̂Aj

~ t1t!:&,

~31!

which means that the monomer spectra are

VAj
~v!52g j^N̂j

A&14g j
2E

2`

`

dteivt^:N̂Aj
~ t !,N̂Aj

~ t1t!:&,

~32!

so the shot-noise level is hereCSN52g j^N̂j
A&.

Until now everything has been kept in operator form. The
next step is connecting the operator averages withc-number
classical averages, which will here be done with the semi-
analytical calculations in mind. Thus, we apply the positive-
P representation averages and note that we shall only con-
sider symmetric states makingAj5Bj , and that the spectra
eventually calculated are linearized.

Expressing the spectra~29a! and ~32! in dimensionless
c-numbers from theP-representation, we readily have

VAjBk

(6) ~v!52ns
21~ ḡ j Ī j1ḡkĪ k!

14E
2`

`

dteivt^dI AjBk

(6) ~ t !,dI AjBk

(6) ~ t1t!&P ,

~33a!

VAj
~v!52ḡ jns

21 Ī j14ḡ j
2E

2`

`

dteivt^I j
A~ t !,I j

A~ t1t!&P ,

~33b!

with the subscriptP referring to the averages being calcu-
lated in theP representation. We have here usedḡ j5g j /g1
and thec-number equivalent of Eq.~28!

dI AjBk

(6) ~ t !5ḡ j I j
A~ t !6ḡkI k

B~ t !, I j
F5F j

†F j , ~34!

while the shot-noise level~30! is

CSN52ns
21~ ḡ j Ī j1ḡkĪ k!. ~35!

The dimensionless spectra are found by the scalings

Ṽjk
(6)~ṽ !5Vjk

(6)~v!k4/g1
5 , Ṽj~ṽ !5Vj~v!k4/g1

5 ,
~36!

and tildes have been dropped.
The linearized equations~16! may be solved directly in

frequency space~see Ref.@46# for details!. So let us define
the spectral matrix of fluctuations in theP-representation in
the steady-state limit~where we may choose the timet arbi-
trarily and, henceforth, taket50),

Sn~v!5E
2`

`

dteivt^Dw~0!Dw~t!T&P , ~37!

with the superscriptn indicating that the averages are equiva-
lent to normally ordered quantum mechanical averages. This
may be calculated using

Sn~v!5~2 ivI2A!21D~ ivI2AT!21, ~38!

whereI is the identity diagonal matrix.
In order to calculate intensity correlations we evaluate

terms like ^I j
A(0),I k

B(t)&P , and expressing this in terms of
the fluctuations around the symmetric steady-state, second-,
third- and fourth-order correlations inDw are obtained. Due
to the strength of the steady-state values higher-order corre-
lation terms may be neglected, so we get to leading order

^I j
A~0!,I k

B~t!&P.AjAk* ^DAj
†~0!,DBk~t!&P

1Aj* Ak^DAj~0!,DBk
†~t!&P

1Aj* Ak* ^DAj~0!,DBk~t!&P

1AjAk^DAj
†~0!,DBk

†~t!&P .

Using this result the normalized dimensionless spectra
~33a! are

V̄A1A2

(6) ~v!511
2

Ī 11g Ī 2

$VA1

n ~v!1g2VA2

n ~v!

62gRe@A1* A2„S14
n ~v!1S14

n ~2v!…

1A1* A2* „S13
n ~v!1S31

n ~v!…#%, ~39a!

V̄A1B2

(6) ~v!511
2

Ī 11g Ī 2

$VA1

n ~v!1g2VB2

n ~v!

62gRe@A1* A2„S18
n ~v!1S18

n ~2v!…

1A1* A2* „S17
n ~v!1S71

n ~v!…#%, ~39b!

V̄A1B1

(6) ~v!511
VA1

n ~v!1VB1

n ~v!

Ī 1

62Re@S16
n ~v!1S16

n ~2v!

1e2 i2f1
„S15

n ~v!1S51
n ~v!…#, ~39c!
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V̄A2B2

(6) ~v!511g
VA2

n ~v!1VB2

n ~v!

Ī 2

62g Re@S38
n ~v!

1S38
n ~2v!1e2 i2f2

„S37
n ~v!1S73

n ~v!…#.

~39d!

Here we have used the normally ordered~indicated with a
superscriptn) single-mode spectrum defined as

VAj

n ~v!5E
2`

`

dteivt^I j
A~0!,I j

A~t!&P , ~40!

so

VA1

n ~v!5 Ī 1„S12
n ~v!1S12

n ~2v!12 Re@S11
n ~v!e2 i2f1#…,

~41a!

VA2

n ~v!5 Ī 2„S34
n ~v!1S34

n ~2v!12 Re@S33
n ~v!e2 i2f2#…,

~41b!

and VBj

n (v)5VAj

n (v). With these quantities the monomer

spectra~33b! normalized to shot noise are readily calculated

V̄Aj
~v!511

2ḡ j

Ī j

VAj

n ~v!. ~42!

The calculations of the spectra use the general symmetry
properties of the spectral matrixSn(v), so, e.g.,S11

n (v)
5@S22

n (v)#* andS12
n (v)5S21

n (2v).

V. RESULTS

In this section, we present intensity correlation spectra
both from the semianalytical derivation, as well as results
from the numerical simulations~the numerical method is dis-
cussed in Appendix B!. The chosen examples are only illus-
trative for the overall behavior, and the results hold for large
parameter areas. This is especially important to stress for the
coupling parameters, since they are not so easy to control
experimentally as the detunings and loss rates.

In order to understand the effect of the coupling between
the waveguides, a comparison to the results of the single
waveguide will be made. It is important to distinguish be-
tween two cases:~a! The monomer correlations, where we
talk about the correlations between the fields within a single
waveguide given by Eq.~42! and where coupling is still
present.~b! The limit of no coupling, where the spectra will
behave as a single-isolated waveguide. This limit is impor-
tant since it allows us to compare with the results previously
obtained by Collett and Walls@12#, and, henceforth, this limit
is referred to as the SHG monomer. Finally, we denote the
spectral variancesV̄AjBk

(6) (v) as the dimer correlations or

variances.
It was shown by Collett and Walls@12# that in the SHG

monomer without detuning very good squeezing in the fun-
damental quadrature2 i (Â1e2 iu12Â1

†eiu1) is obtained when
g is small, and conversely wheng is large good squeezing in

the second-harmonic quadrature2 i (Â2e2 iu22Â2
†eiu2) is ob-

served. These squeezing spectra were optimized by choosing
a proper value of the quadrature phase and as it turns out
u15u25p/2 maximizes the squeezing in both cases~corre-
sponding to the amplitude quadrature!. For exactly this value
the quadrature correlations coincide~to leading order! with
the monomer intensity correlations~31! so the results of Ref.
@12# also predicts excellent noise suppression in the mono-
mer photon number variances considered in this paper. Note
that the choiceu5p/2 only maximizes the squeezing when
detuning is zero, as it was shown by Olsenet al. @47#.

Generally, the violation of the shot-noise limit requires
that the fluctuations diverge in a given observable of the
fields. When this happens the spectral variance for this ob-
servable becomes large, and the canonical conjugate observ-
able of the fields will in turn have a small variance as a
consequence of the Heisenberg uncertainty relation of ca-
nonical conjugate observables. A typical situation where the
fluctuations diverge is close to a transition from one stable
state to another, and therefore violations of the shot-noise
limit is normally studied close to bifurcation points. In this
paper, we study the sum and the difference of the intensities
of the fields, so a violation of the standard quantum limit
implies that sub-Poissonian statistics is observed and that the
photons at the photodetectors are antibunched; they arrive
more regularly than if coherent beam intensities~which obey
Poissonian statistics! were measured. The problem with the
intensity observable is to find the conjugate observable in
which the fluctuations should become large when the inten-
sity correlations violate the standard quantum limit. Numer-
ous attempts to create the most intuitive conjugate observ-
able, namely a phase operator, has not been entirely
successful@38#. On the other hand, in a photon-counting ex-
periment it is exactly intensity correlations that are mea-
sured, making them a suitable choice for a direct experimen-
tal implementation.

The analytical and numerical results presented in the fol-
lowing display excellent mutual agreement. In order to
achieve this it was necessary to have the time resolution of
the two-time correlations low enough to describe the tempo-
ral variations, while simultaneously keeping upper limit of
the correlation time~corresponding to the limitst→6` of
the analytical integral! long enough for the two-time corre-
lation to become close to zero. Otherwise, the temporal Fou-
rier transform of the correlations will give spectra that are in
disagreement with the analytical results. Needless to say, this
had to be checked for each case as the parameters were var-
ied, but generally we usedN5512 or 1024 points with a
resolution in the rangeDt50.0420.2 to calculate the two-
time correlationsC(t). Finally, the length of the simulations
was around 106 time units~corresponding to a measurement
time in the ms regime! before the correlations converged to
the degree shown in the following.

A. g small

First, we consider the case whereg is small and good
nonclassical correlations in the FH fields are expected
„V̄A1

(v).g/@11g# close to self-pulsing transitions… @12#.
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For g50.1, we observed the strongest violations of the
quantum limit close to bistable turning points. An example is
shown in Fig. 4 located in the bistable region of Fig. 3, and
the system is set on the lower branch of the bistable curve
just before the right turning point. The dimer spectrum of the
sum of the FH fields shows a near Lorentzian dip in the

region ofv50 that goes down toV̄A1B1

(1) (v).0.2, implying

strong twin-beam anticorrelations, while the FH difference
shows excess noise here. Takingg even smaller we were

able to getV̄A1B1

(1) (v) very close to zero in the presence of

bistable turning points, a behavior similar to theg/(11g)
behavior observed in the SHG monomer close to self-pulsing
transitions. The excellent correlations are only seen close to
the bistable transition, taking, e.g.,E53.2 for the parameters

in Fig. 4, the minimum of the spectrum isV̄A1B1

(1) (v).0.35.

Returning to Fig. 4, atv.4 the FH sum spectrum again
shows nonclassical correlations of approximately 60% of the
shot-noise limit. The frequency almost coincides with the
imaginary part of one of the more damped eigenvalues.

Here it is relevant to mention that bistability is also
present in the SHG monomer@3,48# @as Eq.~22! indicates
this requires nonzero detunings with equal sign#, and to the
best of our knowledge nobody has here investigated the
quantum behavior. Let us write the detunings of the SHG

monomer asD̄ j . Due to the invariance of the symmetric

steady-state solutions whenD̄ j5D j2Jj we can obtain the
same bistable state investigated in Fig. 4 in the SHG mono-

mer by settingD̄1523.0 and D̄2521.0. The spectrum

V̄A1
(v) displays here exactly the same behavior asV̄A1B1

(1) (v)

in Fig. 4, so also in the SHG monomer perfect antibunching
behavior may be obtained in the smallg limit. Generally, the

dimer spectraV̄AjBj

(1) (v) can be reproduced by the monomer

spectraV̄Aj
(v) when takingD̄ j5D j2Jj . This is not valid,

however, close to a transition to asymmetric states, and also

the spectraV̄AjBj

(2) (v) have no equivalents in the no-coupling

intensity correlations.
In the self-pulsing region of Fig. 3, it is possible to obtain

good correlations if the system is set close to the bistable
area. The spectra in Fig. 5 are for a pump value where both
the bistable and the self-pulsing eigenvalues are of approxi-
mately the same strength, and the plot shows that the dimer
spectrum of the FH difference have strong noise suppression
for nonzerov, that originates from the self-pulsing instabil-
ity setting in atESP54.7. Also the sum shows strong noise
suppression now atv50, caused by the proximity of the
bistable area which gives rise to an eigenvalue with Im(l)
50 that never has Re(l).0. The good correlations ob-
served here are apparently a result of a competition between
the bistable state and the emerging self-pulsing instability,
that eventually dominates for higher pump levels. When the
self-pulsing threshold is approached, the nonclassical behav-
ior is less pronounced. This does not necessarily mean that
nonclassical states are not strong here, but probably that the
intensity is the wrong observable in which to observe non-

FIG. 4. Photon number spectraV̄A1B1

(6) (v) for the parameters in
Fig. 3 andJ153.0, D50, andE53.275, on the lower branch just
before a bistable turning point. Lines show analytical results while
points are numerical results. The shot-noise level is indicated with
CSN.

FIG. 5. Photon number spectraV̄A1B1

(6) (v) for the parameters in
Fig. 3, J152.0, D50, andE52.3. Lines show analytical results
while points are numerical results. The shot-noise level is indicated
with CSN.

FIG. 6. Photon number spectra forD15D251.1 andg50.1,
J1520.0, J251, andE/Esym50.97. Lines show analytical results,
while points are numerical results. The shot-noise level is indicated
with CSN.
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classical correlations here. Such a case was observed in the
SHG monomer, where it was found that detuning of the sys-
tem makes the squeezing ellipse turn so the best squeezing is
no longer observed in the amplitude quadrature@47#.

When detuning is introduced, the system can become
asymmetrically unstable for certain couplings as was shown
in Fig. 3. Generally, the asymmetric instability shows sub-
Poissonian twin-beam correlations in the dimer FH differ-
ence spectrum, which is especially pronounced whenJ1
@J2 where almost perfect antibunching was observed. In
Fig. 6 the dimer spectraV̄A1B1

(6) (v) are shown forD51.1,

J1520 andJ251, taken close to the symmetric transition
Esym580.5, and intensity correlations until 8% of the shot-
noise limit is seen in the FH difference correlations at non-
zerov. By carefully selecting the parameters we were even
able to see correlations until 3% of the shot-noise level,
which underlines that excellent nonclassical correlations are
observed here. This result is quite robust; good sub-
Poissonian correlations are observed also further below the
transition as well as for considerably lower values of the FH
coupling strength. In contrast, the peaked structure around
v50 is quite sensitive to the pump level since it is not seen
taking the system even closer toEsym. We note from Fig. 3
the presence of the self-pulsing instability for the parameters
chosen, and even if quite good correlations are observed in-
side the large asymmetric area forJ1 large, the best results
are obtained close to the self-pulsing regions. Again this
shows that two competing instabilities appear to give rise to
stronger nonclassical correlations. We note finally that the
frequencyv.11, where the best correlations in Fig. 6 are
observed, almost coincides with the imaginary part of the
eigenvalue that is damped the most. Thus, paradoxically, in
this case the least dominating eigenvalue is determining the
frequency of the strong correlations.

B. gÄ1

Setting the loss rates to be identical,g51, the self-
pulsing instability gives rise to strong nonclassical correla-
tions all the way to the transition to the self-pulsing state,

while the bistable transition displays only weak violations.
As an example of the self-pulsing correlations Fig. 7 displays
selected spectra for the dimer correlations. The sum of the
SH fields displays strong correlations atv50, which goes to
25% of the shot-noise limit whenE→ESP516.7, implying
the presence of strong anticorrelations across the
waveguides. The correlation between the difference of the
FH intensities is also strong; for nonzerov correlations
around 50% of the shot-noise limit are seen.

C. g large

For largeg, the SHG monomer predicts strong shot-noise
violations in the SH spectrum at the self-pulsing threshold
@12# @V̄A2

(v).(11g)21 close to self-pulsing transitions#.
For the dimer similar levels of correlations can be obtained
close to the self-pulsing transition. As an example of the
behavior Fig. 8 shows the correlations close toESP5246.0:
highly nonclassical twin-beam correlations are observed in
the sum of the SH intensities, indicating strong anticorrela-
tions. For the selected parameters, we observe also sub-
Poissonian behavior inV̄A2B2

(2) (v), which, in contrast to

V̄A2B2

(1) (v), cannot be observed in the SHG monomer with

equivalent detunings. Although asymmetric areas were found
for nonzero detunings, only weak sub-Poissonian correla-
tions were observed there in the difference of the SH fields
~the sum correlations still show strong sub-Poissonian corre-
lations here, as expected from the SHG monomer
predictions!.

VI. SUMMARY AND DISCUSSION

In this paper, we have proposed a model we denote the
quantum optical dimerfor studying the effects of a simple
mode coupling in a cavity. The model consisted of twox (2)

nonlinear waveguides in a cavity, with coupling between
them from evanescent overlapping waves that was assumed
weak and linear. We chose to restrict ourselves to investigat-
ing nonclassical correlations, and, hence, derived the nonlin-
ear quantum equations of evolution for the system, resulting

FIG. 7. Photon number spectra on resonance and forg51 and
J154.0, J251.0, andE/ESP50.95. Lines show analytical results,
while points are numerical results. The shot-noise level is indicated
with CSN.

FIG. 8. Photon number spectra on resonance and forg510 and
J156.0, J252.0, andE/ESP50.95. Lines show analytical results
while points are numerical results. The shot-noise level is indicated
with CSN.
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in a set of stochastic Langevin equations.
Using a linearized analysis we showed that the system for

low-pump levels allowed a symmetric state to be stable,
where both waveguides have the same steady state. Depend-
ing on the system parameters, this state destabilized into a
self-pulsing state, where temporal oscillations are observed,
or bistable solutions in the steady-states occurred. For some
parameters, the symmetric steady-state lost stability in favor
of an asymmetric steady state, in which the two waveguides
have different steady-state solutions.

We investigated the effects of the quantum noise present
in the system by calculating two-time intensity correlation
spectra of the output fields. It was shown that sub-Poissonian
correlations were present in the system, especially when con-
sidering the sum or difference of the field intensities from
each waveguide implying strong twin-beam correlations.
This nonclassical antibunching effect is a true manifestation
of a quantum behavior and was observed mainly in the fol-
lowing three cases:

~1! Close to bistable turning points the strongest viola-
tions of the standard quantum limit were observed in the
spectrum atv50, corresponding to correlations at infinite
time. In the limit ofg!1, perfect noise suppression could be
obtained in the sum of the FH intensities, implying perfect
twin-beam anticorrelations. This was also observed in the
single waveguide model, when equivalent detunings were
introduced.

~2! Close to threshold for self-pulsing behavior strong
twin-beam correlations were observed both atv50 and also
at values ofv coinciding with the oscillation frequency of
the emerging instability. Thus, the correlations here antici-
pate the behavior above the threshold analogously to the idea
of a quantum image@49#, where the spatial modulations are
encoded in the correlations below threshold while the aver-
age intensity remains homogeneous.

~3! Excellent sub-Poissonian correlations were observed
close to transitions from symmetric to asymmetric steady
states, which is a wholly unique transition to the dimer. This
instability is closely related to the near field of a modulation-
ally unstable system in presence of diffraction; the dimer
sites could be thought of as neighboring near-field pixels.
Variances down to 3% of the shot-noise level were observed
in the the difference of the FH fields, implying nearly perfect
twin-beam behavior. The correlations were particularly
strong when the FH coupling strength was much larger than
the SH and when the FH loss rate was much larger than the
SH loss rate.

It is worth noting that the twin-beam correlations reported
here were all originating from the dimer coupling across the
waveguides; while each field was created individually from
the nonlinear interaction in the corresponding waveguide, the
coupling between the waveguides gave rise to the strong
nonclassical twin-beam correlations. Hence, the nonclassical
correlations arise not because the photons are twins, but
rather because they are brothers.

Common for all these cases was that distinctively strong
nonclassical correlations were observed in parameter regimes
where two types of instabilities were competing. This was
observed in self-pulsing areas close to bistable and asymmet-

ric regimes, and also in asymmetric areas close to bistable
and self-pulsing regimes. These enhanced correlations from
competing instabilities has to the best of our knowledge not
been reported before.

The relative input mirror loss rateg5g2 /g1 between the
SH and FH fields had a strong influence on the sub-
Poissonian behavior, as was previously shown by Collett and
Walls @12# in the SHG monomer. For smallg, the strongest
nonclassical states were mainly observed in the FH fields
while for largeg they were mainly observed in the SH fields.
Since the photon lifetimes in the cavity are inversely propor-
tional to the loss rates of the input mirror, the time spent in
the cavity is decisive for the level of nonclassical correla-
tions of the output fields; the field with the shortest time
spent in the cavity displays the strongest nonclassical corre-
lations. The fact that a long interaction time tends to destroy
the nonclassical correlations have also been observed in
propagation setups. Specifically, Olsenet al. @50# showed
that in propagation SHG the presence of quantum fluctua-
tions caused a dramatic revival of the FH after a certain
propagation length, causing the variance to go above shot-
noise level.

We stress that the results presented here were very robust
to changes in the parameters. Thus, large parameters areas
exist, where strong nonclassical behavior can be seen. This is
especially important to stress for the coupling parameters,
since they are not so easily controlled experimentally.

We investigated only the symmetric state of the system,
and a future study of the stability, dynamics and nonclassical
properties of the asymmetric states is relevant. In this con-
text, we should also mention that the coupling between the
waveguides chosen here was conservative~imaginary cou-
pling in the Langevin equations! while it could also have
been dissipative~real! or a combination~complex!. This
highly depends on the actual setup, and a future study should
include the possibility of a general complex coupling.
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APPENDIX A: THE QUANTUM-TO-CLASSICAL
CORRESPONDENCE

In this section, we show how the master equation~5! is
converted into an equivalent partial differential equation by
expanding the density matrix in coherent states weighted by
a quasiprobability distribution@36,37#. In this distribution,
the operators are replaced by equivalentc-numbers, where
the particular correspondence between these depends on the
ordering of the operators. In the case where only up to
second-order derivatives appear in the corresponding partial
differential equation, the equation is on Fokker-Planck form
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allowing equivalent sets of stochastic Langevin equations to
be found.

We are now left with a choice of probability distribution,
be it either theP, Wigner or Q distribution giving normal,
symmetric or antinormal averages, respectively. The aim of
this paper is to calculate two-time correlation spectra outside
the cavity, and in order to do this most conveniently, the
moments of the intracavity fields must be time and normally
ordered, cf. the discussion in Sec. IV. Since the
P-representation will immediately give the time and nor-
mally ordered averages needed, this is the favorable repre-
sentation in this context. As will be explained later, we use
the Wigner representation for the numerical simulations, and,
therefore, we now provide a general way of deriving the
QPD equations.

The approach we use is to introduce a characteristic
function

x~z!5Tr@D̂~z!r̂#, ~A1!

sox is the trace over a displacement operatorD̂(z) acting on
the density matrix@i.e., the expectation value ofD̂(z)]. The
choice of ordering now amounts to choosing the ordering of
D̂(z). In the symmetric ordering

D̂s~z!5ezÂ†2z* Â, ~A2!

wherez is a complex number describing the amplitude of a
coherent field, andÂ is a boson operator. The normally and
antinormally ordered displacement operators are

D̂n~z!5ezÂ†
e2z* Â, ~A3a!

D̂a~z!5e2z* ÂezÂ†
. ~A3b!

The QPD is now given as a Fourier transform of the charac-
teristic function

W~a!5E d2zx~z!ez* a2za* , ~A4!

where the integration measured2z means integration over
the entire complex plane. From this relation an equivalence

between operators andc numbers has been established as
Â↔a and Â†↔a* . The c-number averages may now be
calculated as, e.g.,

^a* a&5E d2aW~a!a* a,

showing that thec-number averages are influenced by the
choice of ordering throughW(a).

From differentiating Eq.~A1! with respect to time we get

]x~z!

]t
5TrS D̂~z!

]r̂

]t
D , ~A5!

with ] tr̂ being governed by the master equation~5!. We now
to differentiateD̂(z) with respect to, e.g.,z and rearrange to
get

Â†D̂s~z!5S ]

]z
1

z*

2 D D̂s~z!. ~A6!

The right-hand side of Eq.~A5! is evaluated using Eq.~A6!
and the similar other expressions. Equation~A5! is then Fou-
rier transformed according to Eq.~A4!, assuming the char-
acteristic function is well behaved, to give the equation gov-
erning the time evolution ofW(a).

Choosing the normally ordered displacement operator
given by Eq.~A3a! the equation for the Glauber-Sudarshan
P-representation is derived, which is on Fokker-Planck form.
However, due to problems with negative diffusion in quan-
tum optics the generalizedP-distributions @51,52# are nor-
mally used instead, where the problems are surpassed by
doubling the phase space. We will use the positive
P-representation, which can be derived by replacing alla j*
→a j

† and b j* →b j
† in the Fokker-Planck equation of the

Glauber-SudarshanP-representation. This means thata j
† is

now an independent complex quantity instead of being the
complex conjugate ofa j . The Fokker-Planck equation using
the positive P-representation corresponding to the master
equation~5! is then

]Wn~x!

]t
5H ]

]a1
@a1~g12 id1!1 iJ1b12ka1

†a22Ep,a#1
]

]a1
† @a1

†~g11 id1!2 iJ1b1
†2ka1a2

†2Ep,a* #

1
]

]a2
Fa2~g22 id2!1 iJ2b21

k

2
a1

2G1
]

]a2
† Fa2

†~g21 id2!2 iJ2b2
†1

k

2
a1

†2G1
]

]b1
@b1~g12 id1!1 iJ1a1

2kb1
†b22Ep,b#1

]

]b1
† @b1

†~g11 id1!2 iJ1a1
†2kb1b2

†2Ep,b* #1
]

]b2
Fb2~g22 id2!1 iJ2a21

k

2
b1

2G
1

]

]b2
† Fb2

†~g21 id2!2 iJ2a2
†2

k

2
b2

†2G1
k

2 F ]2

]a1
2
a21

]2

]a1
†2

a2
†1

]2

]b1
2
b21

]2

]b1
†2

b2
†G J Wn~x!, ~A7!
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where thec-number equivalents of the operators are$Âj ,Âj
†%↔$a j ,a j

†% and $B̂j ,B̂j
†%↔$b j ,b j

†%, and x represents the
c-number states

x5$a1 ,a1
† ,a2 ,a2

† ,b1 ,b1
† ,b2 ,b2

†%.

The numerical simulation of the positiveP-representation has been reported as very difficult, mainly due to divergent
trajectories@53#, cf. the discussion in Appendix B. Therefore, we choose to use the Wigner representation for the numerical
simulations, obtained by using the symmetric displacement operator~A2!. The time evolution of the Wigner distribution is
governed by

]Ws~x!

]t
5H ]

]a1
@~g12 id1!a12ka1* a21 iJ1b12Ep,a#1

]

]a2
F ~g22 id2!a21

k

2
a1

21 iJ2b2G1
]

]b1
@~g12 id1!b12kb1* b2

1 iJ1a12Ep,b#1
]

]b2
F ~g22 id2!b21

k

2
b1

21 iJ2a2G1
g1

2 S ]2

]a1]a1*
1

]2

]b1]b1*
D

1
g2

2 S ]2

]a2]a2*
1

]2

]b2]b2*
D 1

k

4 S ]3

]a1
2]a2*

1
]3

]b1
2]b2*

D 1c.c.J Ws~x!, ~A8!

where the c-number equivalents of the operators are

$Âj ,Âj
†%↔$a j ,a j* % and$B̂j ,B̂j

†%↔$b j ,b j* % and

x5$a1 ,a1* ,a2 ,a2* ,b1 ,b1* ,b2 ,b2* %.

Due to the third-order derivatives Eq.~A8! is not in Fokker-
Planck form, a problem we address in Appendix B. Note that
the 1c.c. term~denoting the complex conjugate! at the end
applies to the entire equation.

The connection from the QPD equations to the stochastic
Langevin equations can be made if the QPD equation is in
Fokker-Planck form, which for a system withm c-number
statesxj is @37#

]W~x!

]t
5H 2(

j 51

m
]

]xj
Aj~x!1

1

2 (
j ,k51

m
]2

]xj]xk
D jk~x!J W~x!,

~A9!

Using Ito rules for stochastic integration the equivalent set of
Langevin equations is

]xj

]t
5Aj~x!1wj~ t !, ~A10!

wherewj (t) are Gaussian white noise terms,d correlated in
time according to the diffusion matrixD

^wj~ t !wk~ t8!&5D jk~x!d~ t2t8!. ~A11!

We note that ifD depends onx the noise is labeled multipli-
cative which is the case for the positive-P Eq. ~A7!, other-
wise it is additive as it is for the Wigner Eq.~A8!.

APPENDIX B: NUMERICAL SIMULATIONS

The choice of using the Wigner representation for the nu-
merical simulations is not immediately apparent, since it in-

volves an approximation that is not necessary if theP- or the
Q-representation are used. The advantage of the truncated
Wigner Langevin equations~7! is that the noise is additive,
as opposed to the the multiplicative noise of the
Q-representation~where the noise for the quantum SHG
model poses serious limits on the parameter space@18#! and
theP-representation. For theP-representation, we are forced
to use the generalized representations in order to avoid nega-
tive diffusion in the Fokker-Planck equation. Since this
choice implies doubling of the phase space, thec-numbersa j

anda j
† are no longer each others complex conjugate~only on

average! and the respective noise terms are not correlated to
each other, cf. Eq.~10!. This may lead to divergent trajecto-
ries where the convergence is extremely slow, and is the
major reason for us avoiding a numerical implementation of
the positive-P equations. The Wigner equations, on the other
hand, have no problems in this direction.

The drawbacks to use the Wigner equations are first of all
that we have to neglect the third-order terms of the Wigner
QPD equation~A8! to get it on Fokker-Planck form so the
equivalent Langevin equations~A10! may be obtained. It is
uncertain what the implications of this approximation are,
however in many cases no major differences have been ob-
served between simulations of the truncated Wigner equa-
tions compared to exact positive-P or Q equations@47,18#.
On the other hand in Ref.@40# so-called quantum jump pro-
cesses in the degenerate OPO above threshold are shown to
produce significant differences between the truncated Wigner
and the positiveP-representation. In our case the third-order
terms areO(k4), while the other terms areO(k2) or lower.
And because of the weak nonlinear coupling the effect of the
third-order terms is weak, justifying the truncation. Another
drawback to the Wigner representation is that the intracavity
averages are symmetrically ordered, and these cannot be re-
written to time and normal ordering since the intracavity
commutator relations are not known fortÞt8 ~only the out-
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put fields have well-defined correlations here!. This means
that in order to compute the output fields at a given timet,
we must usec-number equivalents of Eq.~23!, and here the
Gaussian white noise part of the input field is an ill-defined
instantaneous quantity. Instead, the output fields of the nu-
merics are calculated by using the fact that the integral of a
stochastic term is well defined. By integrating over a time
window ~which we denoteDtw) and calculating the average,
as described in Ref.@54#, we may obtain the output fields
from Eq. ~23!.

We use the Heun method@55# to numerically solve the
Langevin equations for the intracavity fields and to evaluate
the output fields, and a random number generator@56# for
generating the Gaussian noise terms. The time step was set to
Dt50.001 and checked to be stable. The size of the time
window for calculating the output fields was varied between
Dtw540Dt2200Dt according to the resolution needed for
the individual spectra. Finally, we setns5108, which is a
typical value for the cavity configuration considered here
@57#.

The averages calculated using the output fields of the nu-
merics correspond to symmetrically ordered averages since
they are calculated from the Wigner Langevin equations. In
order to relate these averages to the normally ordered aver-
ages of the spectra in Sec. IV, the output commutator rela-
tions ~24! are used to rewrite the output correlations. The
classical steady states of the output fields are found from the
average of Eq.~23! by taking the input fluctuation to be zero
on average

F1,out5A2g1F11Ep /A2g1, ~B1a!

F2,out5A2g2F2 , F5a0,b0, ~B1b!

wherea j
0 and b j

0 are the unscaled steady states. Assuming
that the output fields are fluctuating around the output steady
states

DÂj ,out5Âj ,out2a j ,out
0 , ~B2!

we introduce the photon number fluctuation operator for
waveguideA as

DN̂j ,out
A ~ t ![N̂j ,out

A ~ t !2^N̂j ,out
A &s

.a j ,out
0 DÂj ,out

† ~ t !1~a j ,out
0 !* DÂj ,out~ t !,

~B3!

with subscripts to indicate that the average is symmetric and
we have neglected higher-order terms in the fluctuations. Us-
ing this expression, the two-time correlation function~27! is
with a symmetric ordering of the operators to leading order

CAjBk

(6) ~t!.^DN̂j ,out
A ~ t !6DN̂k,out

B ~ t !,

DN̂j ,out
A ~ t1t!6DN̂k,out

B ~ t1t!&s . ~B4!

The symmetricc-number correlations of the output field
fluctuations are now calculated in the numerical simulations
of the dimensionless Wigner Langevin equations~7! as
^Dws(0),@Dws(t)#T&s where

Dws5@DA1 ,DA1* ,DA2 ,DA2* ,DB1 ,DB1* ,DB2 ,DB2* #T.

The spectral matrixSs(v) of fluctuations is now straightfor-
wardly given by the Fourier transform of these correlations,
and the correlations~B4! may now be calculated in the same
manner as shown in Sec. IV with the shot-noise level

CSN5~ uAout,j u21uBout,ku2!ns
21 ,

using that the normalization of the output fields are the same
as the one taken for the input fields in Eq.~11c!. Note that
the shot-noise level, here expressed in the symmetric aver-
ages in the Wigner Langevin equation, is identical to the
shot-noise level expressed in averages from the positive-P

equations~35!, sinceuAout,j u252ḡ j Ī j . This is due to the ap-
proximation made in Eq.~B3!.

In the analytical treatment in Sec. IV we used that in the
spectral matrixS(v) certain symmetries are present, so in
fact only approximately one-third of the 64 correlations were
needed to obtain the results presented there. In a numerical
simulation this is only approximately valid in the limits of
long integration times and large correlation times. Much bet-
ter results are obtained faster if the spectra are calculated
directly from the full 838 matrix Ss(v).
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