47 research outputs found

    Remarks on Legendrian Self-Linking

    Get PDF
    The Thurston-Bennequin invariant provides one notion of self-linking for any homologically-trivial Legendrian curve in a contact three-manifold. Here we discuss related analytic notions of self-linking for Legendrian knots in Euclidean space. Our definition is based upon a reformulation of the elementary Gauss linking integral and is motivated by ideas from supersymmetric gauge theory. We recover the Thurston-Bennequin invariant as a special case.Comment: 42 pages, many figures; v2: minor revisions, published versio

    Tightness in contact metric 3-manifolds

    Full text link
    This paper begins the study of relations between Riemannian geometry and global properties of contact structures on 3-manifolds. In particular we prove an analog of the sphere theorem from Riemannian geometry in the setting of contact geometry. Specifically, if a given three dimensional contact manifold (M,\xi) admits a complete compatible Riemannian metric of positive 4/9-pinched curvature then the underlying contact structure \xi is tight; in particular, the contact structure pulled back to the universal cover is the standard contact structure on S^3. We also describe geometric conditions in dimension three for \xi to be universally tight in the nonpositive curvature setting.Comment: 29 pages. Added the sphere theorem, removed high dimensional material and an alternate approach to the three dimensional tightness radius estimate

    The Minimal Length of a Lagrangian Cobordism between Legendrians

    Get PDF
    To investigate the rigidity and flexibility of Lagrangian cobordisms between Legendrian submanifolds, we investigate the minimal length of such a cobordism, which is a 11-dimensional measurement of the non-cylindrical portion of the cobordism. Our primary tool is a set of real-valued capacities for a Legendrian submanifold, which are derived from a filtered version of Legendrian Contact Homology. Relationships between capacities of Legendrians at the ends of a Lagrangian cobordism yield lower bounds on the length of the cobordism. We apply the capacities to Lagrangian cobordisms realizing vertical dilations (which may be arbitrarily short) and contractions (whose lengths are bounded below). We also study the interaction between length and the linking of multiple cobordisms as well as the lengths of cobordisms derived from non-trivial loops of Legendrian isotopies.Comment: 33 pages, 9 figures. v2: Minor corrections in response to referee comments. More general statement in Proposition 3.3 and some reorganization at the end of Section

    Birational cobordism invariance of uniruled symplectic manifolds

    Full text link
    A symplectic manifold (M,ω)(M,\omega) is called {\em (symplectically) uniruled} if there is a nonzero genus zero GW invariant involving a point constraint. We prove that symplectic uniruledness is invariant under symplectic blow-up and blow-down. This theorem follows from a general Relative/Absolute correspondence for a symplectic manifold together with a symplectic submanifold. A direct consequence is that symplectic uniruledness is a symplectic birational invariant. Here we use Guillemin and Sternberg's notion of cobordism as the symplectic analogue of the birational equivalence.Comment: To appear in Invent. Mat

    Realizing 4-manifolds as achiral Lefschetz fibrations

    No full text

    Torsion and Open Book Decompositions

    No full text
    corecore