22 research outputs found

    Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-3p as Regulators of Metabolism in Skeletal Muscle

    Get PDF
    Summary: Skeletal muscle is composed of different myofiber types that preferentially use glucose or lipids for ATP production. How fuel preference is regulated in these post-mitotic cells is largely unknown, making this issue a key question in the fields of muscle and whole-body metabolism. Here, we show that microRNAs (miRNAs) play a role in defining myofiber metabolic profiles. mRNA and miRNA signatures of all myofiber types obtained at the single-cell level unveiled fiber-specific regulatory networks and identified two master miRNAs that coordinately control myofiber fuel preference and mitochondrial morphology. Our work provides a complete and integrated mouse myofiber type-specific catalog of gene and miRNA expression and establishes miR-27a-3p and miR-142-3p as regulators of lipid use in skeletal muscle. : Chemello et al. characterize coding mRNAs and non-coding microRNAs expressed by myofibers of hindlimb mouse muscles, identifying complex interactions between these molecules that modulate mitochondrial functions and muscle metabolism. They demonstrate that specific short non-coding RNAs influence the contractile fiber composition of skeletal muscles by modulating muscle metabolism. Keywords: single myofiber, skeletal muscle metabolism, mitochondria, miRNAs, lipid

    Subcellular specificity of cannabinoid effects in striatonigral circuits

    Get PDF
    Recent advances in neuroscience have positioned brain circuits as key units in controlling behavior, implying that their positive or negative modulation necessarily leads to specific behavioral outcomes. However, emerging evidence suggests that the activation or inhibition of specific brain circuits can actually produce multimodal behavioral outcomes. This study shows that activation of a receptor at different subcellular locations in the same neuronal circuit can determine distinct behaviors. Pharmacological activation of type 1 cannabinoid (CB1) receptors in the striatonigral circuit elicits both antinociception and catalepsy in mice. The decrease in nociception depends on the activation of plasma membrane-residing CB1 receptors (pmCB1), leading to the inhibition of cytosolic PKA activity and substance P release. By contrast, mitochondrial-associated CB1 receptors (mtCB1) located at the same terminals mediate cannabinoid-induced catalepsy through the decrease in intra-mitochondrial PKA-dependent cellular respiration and synaptic transmission. Thus, subcellular-specific CB1 receptor signaling within striatonigral circuits determines multimodal control of behavior

    Impact des phosphorylations sur tyrosine sur le métabolisme mitochondrial (régulation et impacts fonctionnels des phosphorylations induites par la Src kinase)

    No full text
    La mitochondrie est une organelle très importante vu son implication dans plusieurs processus cellulaires. Elle produit notamment la majeure partie de l'énergie qui est consommée par la cellule, grâce aux processus d'oxydation phosphorylante (OXPHOS). La phosphorylation des enzymes impliquées dans les OXPHOS apparait comme une voie de régulation importante de la production énergétique. L'objectif de ce thèse était donc de comprendre comment les phosphorylations, et plus particulièrement, les phosphorylations sur tyrosine induites par la Src kinase influencent les OXPHOS. Il a donc été démontré qu'il existe, à l'intérieur des mitochondries, des voies de régulation de ces processus de phosphorylation induits par la Src kinase. Ces processus pouvant induire la phosphorylation de plusieurs enzymes mitochondriales, notamment plusieurs sous-unités des complexes du système des électrons et ainsi, grandement influencer les OXPHOS. Il a aussi été démontré que la Src kinase semble aussi présente dans les mitochondries de cellules cancéreuses, induisant la phosphorylation d'une sous-unité de la NADH-oxidoréductase et une augmentation du métabolisme énergétique mitochondrial. Cette régulation des OXPHOS dans les cellules cancéreuses par la Src kinase pourrait participer à l'établissement du phénotype hautement prolifératif de ces cellules.Mitochondria are implicated in several key cellular processes. They are producing most part of the energy that is consumed by the cell via oxidative phosphorylation processes (OXPHOS). Phosphorylation of different components implicated in OXPHOS are known to constitute an important regulation pathway of energetic production. The objective of this thesis was to understand how tyrosine phosphorylation induced by the Src kinase could influence OXPHOS. First, it was shown that Src kinase mediated phosphorylation can be regulated directly in mitochondria, inducing phosphorylation of several mitochondrial proteins and different effects on OXPHOS. I also demonstrated that Src kinase is also present in mitochondria of cancer cells where it can lead to phosphorylation of NADH-oxidoreductase. This phosphorylation site is associated with increase of OXPHOS which could be implicated in the establishment of global phenotype of cancer cells.BORDEAUX2-Bib. électronique (335229905) / SudocSudocFranceF

    Connecting Dots between Mitochondrial Dysfunction and Depression

    No full text
    Mitochondria are the prime source of cellular energy, and are also responsible for important processes such as oxidative stress, apoptosis and Ca2+ homeostasis. Depression is a psychiatric disease characterized by alteration in the metabolism, neurotransmission and neuroplasticity. In this manuscript, we summarize the recent evidence linking mitochondrial dysfunction to the pathophysiology of depression. Impaired expression of mitochondria-related genes, damage to mitochondrial membrane proteins and lipids, disruption of the electron transport chain, higher oxidative stress, neuroinflammation and apoptosis are all observed in preclinical models of depression and most of these parameters can be altered in the brain of patients with depression. A deeper knowledge of the depression pathophysiology and the identification of phenotypes and biomarkers with respect to mitochondrial dysfunction are needed to help early diagnosis and the development of new treatment strategies for this devastating disorder

    Alpha-synuclein aggregates trigger cardiolipin externalization and mitophagy

    No full text
    ABSTRACTAccumulation of Lewy bodies in dopaminergic neurons is associated to Parkinson disease (PD). The main component of Lewy bodies appears to be aggregates of alpha-synuclein (α-syn). Several mutations of the gene encoding this protein promote its aggregation. Thus, clustering of α-syn is considered a central event in the onset of PD. An old theory also postulates that mitochondrial dysfunction represents another cause of PD pathogenesis. However, the impact of α-syn aggregates on mitochondria remains poorly understood considering the technical difficulties to discriminate between the different forms of α-syn. In this punctum, we describe our recent work in which we used a newly developed optogenetic tool to control the aggregation of α-syn and examine the impact on mitochondria. This work revealed that α-syn aggregates dynamically interact with mitochondria, triggering their depolarization and leading to cardiolipin translocation to the surface of mitochondria and mitophagy.Abbreviations: α-syn: alpha-synuclein; BNIP3L: BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like; FUNDC1: FUN14 domain-containing protein 1; IMM: inner mitochondrial membrane; LIPA: light-induced protein aggregation; OMM: outer mitochondrial membrane; PD: Parkinson disease; SNc: substantia nigra par compacta

    Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation

    No full text
    During starvation, intra-mitochondrial sirtuins, NAD(+) sensitive deacylating enzymes that modulate metabolic homeostasis and survival, directly adjust mitochondrial function to nutrient availability; concomitantly, mitochondria elongate to escape autophagic degradation. However, whether sirtuins also impinge on mitochondrial dynamics is still uncharacterized. Here we show that the mitochondrial Sirtuin 5 (Sirt5) is essential for starvation induced mitochondrial elongation. Deletion of Sirt5 in mouse embryonic fibroblasts increased levels of mitochondrial dynamics of 51kDa protein and mitochondrial fission protein 1, leading to mitochondrial accumulation of the pro-fission dynamin related protein 1 and to mitochondrial fragmentation. During starvation, Sirt5 deletion blunted mitochondrial elongation, resulting in increased mitophagy. Our results indicate that starvation induced mitochondrial elongation and evasion from autophagic degradation requires the energy sensor Sirt5

    Metabolic Characterization and Consequences of Mitochondrial Pyruvate Carrier Deficiency in Drosophila melanogaster

    No full text
    In insect, pyruvate is generally the predominant oxidative substrate for mitochondria. This metabolite is transported inside mitochondria via the mitochondrial pyruvate carrier (MPC), but whether and how this transporter controls mitochondrial oxidative capacities in insects is still relatively unknown. Here, we characterize the importance of pyruvate transport as a metabolic control point for mitochondrial substrate oxidation in two genotypes of an insect model, Drosophila melanogaster, differently expressing MPC1, an essential protein for the MPC function. We evaluated the kinetics of pyruvate oxidation, mitochondrial oxygen consumption, metabolic profile, activities of metabolic enzymes, and climbing abilities of wild-type (WT) flies and flies harboring a deficiency in MPC1 (MPC1def). We hypothesized that MPC1 deficiency would cause a metabolic reprogramming that would favor the oxidation of alternative substrates. Our results show that the MPC1def flies display significantly reduced climbing capacity, pyruvate-induced oxygen consumption, and enzymatic activities of pyruvate kinase, alanine aminotransferase, and citrate synthase. Moreover, increased proline oxidation capacity was detected in MPC1def flies, which was associated with generally lower levels of several metabolites, and particularly those involved in amino acid catabolism such as ornithine, citrulline, and arginosuccinate. This study therefore reveals the flexibility of mitochondrial substrate oxidation allowing Drosophila to maintain cellular homeostasis

    Identification of proteins interacting with the mitochondrial small heat shock protein Hsp22 of <i>Drosophila melanogaster</i>: Implication in mitochondrial homeostasis

    No full text
    <div><p>The small heat shock protein (sHsp) Hsp22 from <i>Drosophila melanogaster</i> (DmHsp22) is part of the family of sHsps in this diptera. This sHsp is characterized by its presence in the mitochondrial matrix as well as by its preferential expression during ageing. Although DmHsp22 has been demonstrated to be an efficient <i>in vitro</i> chaperone, its function within mitochondria <i>in vivo</i> remains largely unknown. Thus, determining its protein-interaction network (interactome) in the mitochondrial matrix would help to shed light on its function(s). In the present study we combined immunoaffinity conjugation (IAC) with mass spectroscopy analysis of mitochondria from HeLa cells transfected with DmHsp22 in non-heat shock condition and after heat shock (HS). 60 common DmHsp22-binding mitochondrial partners were detected in two independent IACs. Immunoblotting was used to validate interaction between DmHsp22 and two members of the mitochondrial chaperone machinery; Hsp60 and Hsp70. Among the partners of DmHsp22, several ATP synthase subunits were found. Moreover, we showed that expression of DmHsp22 in transiently transfected HeLa cells increased maximal mitochondrial oxygen consumption capacity and ATP contents, providing a mechanistic link between DmHsp22 and mitochondrial functions.</p></div

    DmHsp22 is an important factor in thermotolerance under heat stress condition.

    No full text
    <p><b>(A)</b> The DmHsp22 (black) and control vector (gray) transfected cells in cells transiently expressing mitochondrial luciferase were cultured and transfected as described in Materials and Methods. Cells were exposed to 40, 42, 44 or 46°C for 30 and (B) 60 minutes in presence of 20 μg. mL<sup>-1</sup> cycloheximide. Following heat exposure, cells recovered for 6 hours at 37°C, were lysed and assayed for luciferase activity. Data are presented as means and SD of four replicates. P*< 0.05; P** < 0.01 and P***<0.001 according to two-way ANOVA (A-B). (C) Fluorescence microscopy of HeLa cells expressing recombinant luciferase. Top 2 rows represent Non-HS cells and bottom 2 rows represent HS cells at 44°C for 30 and 60 min.</p

    Abundancy of ATP synthase (Complex V) subunits and subunit composition of DmHsp22-associated partners.

    No full text
    <p>Detected subunits of the ATP synthase machinery as mitochondrial partners of DmHsp22 have been summarized in the bar chart from the highest to the lowest percentage of detected proteins. Subunits related to the F1 and F0 sub-complexes have been identified in white and black background bar charts according to their association to the F1 or F0 sub-complexes respectively.</p
    corecore