12 research outputs found

    Reduced Quantitative Ultrasound Bone Mineral Density in HIV-Infected Patients on Antiretroviral Therapy in Senegal

    Get PDF
    Background: Bone status in HIV-infected patients on antiretroviral treatment (ART) is poorly documented in resource-limited settings. We compared bone mineral density between HIV-infected patients and control subjects from Dakar, Senegal. Methods: A total of 207 (134 women and 73 men) HIV-infected patients from an observational cohort in Dakar (ANRS 1215) and 207 age-and sex-matched controls from the general population were enrolled. Bone mineral density was assessed by quantitative ultrasound (QUS) at the calcaneus, an alternative to the reference method (i.e. dual X-absorptiometry), often not available in resource-limited countries. Results: Mean age was 47.0 (+/- 8.5) years. Patients had received ART for a median duration of 8.8 years; 45% received a protease inhibitor and 27% tenofovir; 84% had undetectable viral load. Patients had lower body mass index (BMI) than controls (23 versus 26 kg/m(2), P<0.001). In unadjusted analysis, QUS bone mineral density was lower in HIV-infected patients than in controls (difference: -0.36 standard deviation, 95% confidence interval (CI): -0.59;-0.12, P = 0.003). Adjusting for BMI, physical activity, smoking and calcium intake attenuated the difference (-0.27, CI: -0.53; -0.002, P = 0.05). Differences in BMI between patients and controls explained a third of the difference in QUS bone mineral density. Among patients, BMI was independently associated with QUS bone mineral density (P<0.001). An association between undetectable viral load and QUS bone density was also suggested (beta = 0.48, CI: 0.02; 0.93; P = 0.04). No association between protease inhibitor or tenofovir use and QUS bone mineral density was found. Conclusion: Senegalese HIV-infected patients had reduced QUS bone mineral density in comparison with control subjects, in part related to their lower BMI. Further investigation is needed to clarify the clinical significance of these observations

    Evaluation of RayXpert® for shielding design of medical facilities

    No full text
    In a context of growing demands for expert evaluation concerning medical, industrial and research facilities, the French Institute for radiation protection and nuclear safety (IRSN) considered necessary to acquire new software for efficient dimensioning calculations. The selected software is RayXpert®. Before using this software in routine, exposure and transmission calculations for some basic configurations were validated. The validation was performed by the calculation of gamma dose constants and tenth value layers (TVL) for usual shielding materials and for radioisotopes most used in therapy (Ir-192, Co-60 and I-131). Calculated values were compared with results obtained using MCNPX as a reference code and with published values. The impact of different calculation parameters, such as the source emission rays considered for calculation and the use of biasing techniques, was evaluated

    Evaluation of RayXpert® for shielding design of medical facilities

    No full text
    International audienceIn a context of growing demands for expert evaluation concerning medical, industrial and research facilities, the French Institute for radiation protection and nuclear safety (IRSN) considered necessary to acquire new software for efficient dimensioning calculations. The selected software is RayXpert®. Before using this software in routine, exposure and transmission calculations for some basic configurations were validated. The validation was performed by the calculation of gamma dose constants and tenth value layers (TVL) for usual shielding materials and for radioisotopes most used in therapy (Ir-192, Co-60 and I-131). Calculated values were compared with results obtained using MCNPX as a reference code and with published values. The impact of different calculation parameters, such as the source emission rays considered for calculation and the use of biasing techniques, was evaluated

    Patient dose in interventional radiology: a multicentre study of the most frequent procedures in France

    No full text
    International audienceOBJECTIVES:A national retrospective survey on patient doses was performed by the French Society of Medical physicists to assess reference levels (RLs) in interventional radiology as required by the European Directive 2013/59/Euratom.METHODS:Fifteen interventional procedures in neuroradiology, vascular radiology and osteoarticular procedures were analysed. Kerma area product (KAP), fluoroscopy time (FT), reference air kerma and number of images were recorded for 10 to 30 patients per procedure. RLs were calculated as the 3rd quartiles of the distributions.RESULTS:Results on 4600 procedures from 36 departments confirmed the large variability in patient dose for the same procedure. RLs were proposed for the four dosimetric estimators and the 15 procedures. RLs in terms of KAP and FT were 90 Gm.cm2 and 11 mins for cerebral angiography, 35 Gy.cm2 and 16 mins for biliary drainage, 75 Gy.cm2 and 6 mins for lower limbs arteriography and 70 Gy.cm2 and 11 mins for vertebroplasty. For these four procedures, RLs were defined according to the complexity of the procedure. For all the procedures, the results were lower than most of those already published.CONCLUSIONS:This study reports RLs in interventional radiology based on a national survey. Continual evolution of practices and technologies requires regular updates of RLs.KEY POINTS:• Delivered dose in interventional radiology depends on procedure, practice and patient. • National RLs are proposed for 15 interventional procedures. • Reference levels (RLs) are useful to benchmark practices and optimize protocols. • RLs are proposed for kerma area product, air kerma, fluoroscopy time and number of images. • RLs should be adapted to the procedure complexity and updated regularly

    Long-term experience and analysis of data on diagnostic reference levels: the good, the bad, and the ugly

    No full text
    International audienceOBJECTIVES: To analyze 11-year data of France for temporal trends in dose indices and dose optimization and draw lessons for those who are willing to work on creation and update of diagnostic reference levels (DRLs).METHODS: The data from about 3000 radiology departments leading to about 750,000 imaging exams between 2004 and 2015 was analyzed, and patterns of reductions in dose for those below and above the DRLs were estimated and correlated with technology change.RESULTS: Dose optimization achieved was important and significant in departments which were above or just below the DRL (p = .006) but not in those which were around half of the DRL values. The decrease in 75th percentile value of Kerma air product (KAP) for chest radiography by 27.4% between 2004 and 2015 was observed with the number of flat panel detectors increase from 6 to 43%. A good correlation between the detector type distribution and the level of patient radiation exposure is observed. Otherwise, setting DRLs for standard-sized patient excludes patients lower and higher weighted than "standard."CONCLUSIONS: The concept of DRL may become obsolete unless lessons drawn from the experience of users are taken into account. While establishing DRLs should be part of the regulations, setting up and updating values should be governed by bodies whose decision-making cycle is short, at the most 1 year. A local rather than national approach, taking into account body habitus and image quality, needs to be organized.KEY POINTS: * The technology changes faster than regulations. Requirement of DRL establishment should be part of the regulations; however, setting and updating values should be the role of professional societies. * The concept of DRL, highlighting the 75th percentile values and dedicated to standard-sized adult, misses optimization opportunities in the majority of patients who are below the 75th percentile value and outside the range of standard-sized adult. * The ugly aspects of the DRL concept include its non-applicability to individuals, no customization to clinical indications, and lack of consideration of image quality
    corecore