61 research outputs found

    Assessing Field Pressure and Plume Migration in CO2 Storages: Application of Case-specific Workflows at in Salah and Sleipner

    Get PDF
    AbstractPerformance assessment of CO2 geological storage aims at applying a specific workflow adapted to the site to be considered, using iterations between modeling tools and methods together with monitoring techniques. In the frame of the CO2ReMoVe European project site specific innovative workflows have been applied at In Salah (Krechba reservoir) and Sleipner (Utsira sand formation reservoir) to predict the reservoir pressure field and the associated CO2 plume migration. The workflows we applied benefit from appropriate site monitoring techniques: respectively InSAR satellite imaging for the Krechba reservoir and 4D Seismics for the Utsira sand formation storage. Indeed, simulation of the reservoir pressure and the plume migration are the two major modeling issues to deal with when considering storage efficiency and safety -together with public awareness when addressing the public acceptance issue

    CO2 streams containing associated components—A review of the thermodynamic and geochemical properties and assessment of some reactive transport codes

    Get PDF
    AbstractModelling of the impact on storage of “ CO2-associated components” has rarely been addressed so far. This review, performed within the European research project CO2ReMoVe, exposes a selection of CO2 streams compositions coming from thermal power plants emissions and those injected in pilot sites part of the CO2ReMoVe project. It highlights the lack of data coming from laboratory experiments to describe properly the physical properties of some relevant gas mixtures. The geochemical impact of only 2 components (SO2 and H2S) is evidenced by some geochemical studies. Concerning the numerical modelling, four reactive transport codes (PHREEQC, SCALE2000, TOUGHREACT and COORES) were assessed. Actual limitations lie mainly in the capacity of calculating the physical properties of the whole set of gases (CO2–O2–SO2–N2–Ar–NOx–H2S–COS–CO–H2–HCl–NH3–CH4–C2H6–H2O). The new data acquired within on-going French projects will complete the knowledge of such complex gas mixtures behaviour

    The SEEMP Approach to Semantic Interoperability for E-Employment

    Get PDF
    SEEMP is a European Project that promotes increased partnership between labour market actors and the development of closer relations between private and public employment services, making optimal use of the various actors’ specific characteristics, thus providing job-seekers and employers with better services. The need for a flexible collaboration gives rise to the issue of interoperability in both data exchange and share of services. SEEMP proposes a solution that relies on the concepts of services and semantics in order to provide a meaningful service-based communication among labour market actors requiring a minimal shared commitment

    Defining and Supporting Concurrent Engineering Policies in SCM

    No full text

    Dynamic Fluid Flow and Geomechanical Coupling to Assess the CO2 Storage Integrity in Faulted Structures

    No full text
    The SiteChar research on the Southern Adriatic Sea site focused on the investigation of the geomechanical and hydrodynamic behaviour of the storage complex in the case of CO2 injection in a reservoir consisting of fractured carbonate formations. Special attention was paid to the effects that natural faults and fractures might have on CO2 migration, and the effects that injection might have on the stability of faults. This assessment was originally performed via a hydro-geomechanical one-way coupling which relies on an adequate representation of faults in the model, allowing one to simulate fluid flow along the fault plane and inside faults as well as evolution of the stress state due to CO2 injection. The geological model was populated with petrophysical and geomechanical parameters derived either from laboratory measurements performed on samples from a reservoir analogue, or published literature. Since only sparse data were available, various scenarios were simulated to take into account the uncertainties in the fluid flow and geomechanical properties of the model: the different state of faults (i.e., open or closed) and various in situ stress state, commonly named geostatic stresses as the earth’s crust deformation is assumed to be slow regarding the short-term study. Various fluid flow parameters were also considered, although only one set of petrophysical data corresponding to the most realistic ones is considered here. Faults modeled as volumetric elements behave as flow pathways for fluids when they are conductive. The injected CO2 migrates inside and through the Rovesti fault, which is located near the injection well. The fluid flow also induces overpressure in the faults. The overpressure in the Rovesti fault reaches 2.2 MPa while it reaches 4.4 MPa at the bottom hole of the injector. Extending to about 30 km, the pore pressure field reaches the Gondola fault located at 15 km from the injection zone but the overpressure does not exceed 0.1 MPa at such a distance from the injection well. Using this overpressure as loading in the geomechanical model allows one to compute the effective stress variation in the whole geological model. The total effective stress is then computed by adding an estimation of the regional stress. Post-processing is performed to derive the likely damage of the faults according to the Mohr-Coulomb criterion. The results are illustrated on the Rovesti fault, which is located near the injection well and consequently the most likely to be reactivated. On the basis of available data, for all the modeled scenarios (various initial stress regimes, closed or open fault), no fault damage is observed, as the stress state stays below the Mohr-Coulomb criteria

    Dynamic Fluid Flow and Geomechanical Coupling to Assess the CO

    No full text
    The SiteChar research on the Southern Adriatic Sea site focused on the investigation of the geomechanical and hydrodynamic behaviour of the storage complex in the case of CO2 injection in a reservoir consisting of fractured carbonate formations. Special attention was paid to the effects that natural faults and fractures might have on CO2 migration, and the effects that injection might have on the stability of faults. This assessment was originally performed via a hydro-geomechanical one-way coupling which relies on an adequate representation of faults in the model, allowing one to simulate fluid flow along the fault plane and inside faults as well as evolution of the stress state due to CO2 injection. The geological model was populated with petrophysical and geomechanical parameters derived either from laboratory measurements performed on samples from a reservoir analogue, or published literature. Since only sparse data were available, various scenarios were simulated to take into account the uncertainties in the fluid flow and geomechanical properties of the model: the different state of faults (i.e., open or closed) and various in situ stress state, commonly named geostatic stresses as the earth’s crust deformation is assumed to be slow regarding the short-term study. Various fluid flow parameters were also considered, although only one set of petrophysical data corresponding to the most realistic ones is considered here. Faults modeled as volumetric elements behave as flow pathways for fluids when they are conductive. The injected CO2 migrates inside and through the Rovesti fault, which is located near the injection well. The fluid flow also induces overpressure in the faults. The overpressure in the Rovesti fault reaches 2.2 MPa while it reaches 4.4 MPa at the bottom hole of the injector. Extending to about 30 km, the pore pressure field reaches the Gondola fault located at 15 km from the injection zone but the overpressure does not exceed 0.1 MPa at such a distance from the injection well. Using this overpressure as loading in the geomechanical model allows one to compute the effective stress variation in the whole geological model. The total effective stress is then computed by adding an estimation of the regional stress. Post-processing is performed to derive the likely damage of the faults according to the Mohr-Coulomb criterion. The results are illustrated on the Rovesti fault, which is located near the injection well and consequently the most likely to be reactivated. On the basis of available data, for all the modeled scenarios (various initial stress regimes, closed or open fault), no fault damage is observed, as the stress state stays below the Mohr-Coulomb criteria
    • …
    corecore